Direkt zum Inhalt
StartseitePython

Fraud Detection in Python

Learn how to detect fraud using Python.

Kurs Kostenlos Starten
4 Stunden16 Videos57 Übungen18.744 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

A typical organization loses an estimated 5% of its yearly revenue to fraud. In this course, you will learn how to fight fraud by using data. For example, you'll learn how to apply supervised learning algorithms to detect fraudulent behavior similar to past ones, as well as unsupervised learning methods to discover new types of fraud activities. Moreover, in fraud analytics you often deal with highly imbalanced datasets when classifying fraud versus non-fraud, and during this course you will pick up some techniques on how to deal with that. The course provides a mix of technical and theoretical insights and shows you hands-on how to practically implement fraud detection models. In addition, you will get tips and advice from real-life experience to help you prevent making common mistakes in fraud analytics.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.
  1. 1

    Introduction and preparing your data

    Kostenlos

    In this chapter, you'll learn about the typical challenges associated with fraud detection, and will learn how to resample your data in a smart way, to tackle problems with imbalanced data.

    Kapitel Jetzt Abspielen
    Introduction to fraud detection
    50 xp
    Checking the fraud to non-fraud ratio
    100 xp
    Plotting your data
    100 xp
    Increasing successful detections using data resampling
    50 xp
    Resampling methods for imbalanced data
    50 xp
    Applying SMOTE
    100 xp
    Compare SMOTE to original data
    100 xp
    Fraud detection algorithms in action
    50 xp
    Exploring the traditional way to catch fraud
    100 xp
    Using ML classification to catch fraud
    100 xp
    Logistic regression combined with SMOTE
    100 xp
    Using a pipeline
    100 xp
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

Datensätze

Chapter 1 datasetsChapter 2 datasetsChapter 3 datasetsChapter 4 datasets

Mitwirkende

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Mari Nazary
Charlotte Werger HeadshotCharlotte Werger

Director of Advanced Analytics at Nike

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Fraud Detection in Python Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.