Direkt zum Inhalt
StartseiteR

Generalized Linear Models in R

The Generalized Linear Model course expands your regression toolbox to include logistic and Poisson regression.

Kurs Kostenlos Starten
4 Stunden14 Videos51 Übungen19.099 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Linear regression serves as a workhorse of statistics, but cannot handle some types of complex data. A generalized linear model (GLM) expands upon linear regression to include non-normal distributions including binomial and count data. Throughout this course, you will expand your data science toolkit to include GLMs in R. As part of learning about GLMs, you will learn how to fit model binomial data with logistic regression and count data with Poisson regression. You will also learn how to understand these results and plot them with ggplot2.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.
  1. 1

    GLMs, an extension of your regression toolbox

    Kostenlos

    This chapter teaches you how generalized linear models are an extension of other models in your data science toolbox. The chapter also uses Poisson regression to introduce generalize linear models.

    Kapitel Jetzt Abspielen
    Limitations of linear models
    50 xp
    Assumptions of linear models
    50 xp
    Refresher on fitting linear models
    100 xp
    Poisson regression
    50 xp
    Fitting a Poisson regression in R
    100 xp
    Comparing linear and Poisson regression
    100 xp
    Intercepts-comparisons versus means
    100 xp
    Basic lm() functions with glm()
    50 xp
    Applying summary(), print(), and tidy() to glm
    100 xp
    Extracting coefficients from glm()
    100 xp
    Predicting with glm()
    100 xp
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

Datensätze

Bus Commuter dataset

Mitwirkende

Collaborator's avatar
Chester Ismay
Collaborator's avatar
David Campos
Collaborator's avatar
Shon Inouye
Richard Erickson HeadshotRichard Erickson

Data Scientist

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Generalized Linear Models in R Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.