Direkt zum Inhalt
StartseitePython

Hyperparameter Tuning in Python

Learn techniques for automated hyperparameter tuning in Python, including Grid, Random, and Informed Search.

Kurs Kostenlos Starten
4 Stunden13 Videos44 Übungen19.667 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

As a data or machine learning scientist, building powerful machine learning models depends heavily on the set of hyperparameters used. But with increasingly complex models with lots of options, how do you efficiently find the best settings for your particular problem? The answer is hyperparameter tuning!

Hyperparameters vs. parameters

Gain practical experience using various methodologies for automated hyperparameter tuning in Python with Scikit-Learn.

Learn the difference between hyperparameters and parameters and best practices for setting and analyzing hyperparameter values. This foundation will prepare you to understand the significance of hyperparameters in machine learning models.

Grid search

Master several hyperparameter tuning techniques, starting with Grid Search. Using credit card default data, you will practice conducting Grid Search to exhaustively search for the best hyperparameter combinations and interpret the results.

You will be introduced to Random Search, and learn about its advantages over Grid Search, such as efficiency in large parameter spaces.​

Informed search

In the final part of the course, you will explore advanced optimization methods, such as Bayesian and Genetic algorithms.

These informed search techniques are demonstrated through practical examples, allowing you to compare and contrast them with uninformed search methods. By the end, you will have a comprehensive understanding of how to optimize hyperparameters effectively to improve model performance​.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Machine Learning Scientist mit Python

Gehe zu Track

Überwachtes Machine Learning in Python

Gehe zu Track
  1. 1

    Hyperparameters and Parameters

    Kostenlos

    In this introductory chapter you will learn the difference between hyperparameters and parameters. You will practice extracting and analyzing parameters, setting hyperparameter values for several popular machine learning algorithms. Along the way you will learn some best practice tips & tricks for choosing which hyperparameters to tune and what values to set & build learning curves to analyze your hyperparameter choices.

    Kapitel Jetzt Abspielen
    Introduction & 'Parameters'
    50 xp
    Parameters in Logistic Regression
    50 xp
    Extracting a Logistic Regression parameter
    100 xp
    Extracting a Random Forest parameter
    100 xp
    Introducing Hyperparameters
    50 xp
    Hyperparameters in Random Forests
    50 xp
    Exploring Random Forest Hyperparameters
    100 xp
    Hyperparameters of KNN
    100 xp
    Setting & Analyzing Hyperparameter Values
    50 xp
    Automating Hyperparameter Choice
    100 xp
    Building Learning Curves
    100 xp
  2. 2

    Grid search

    This chapter introduces you to a popular automated hyperparameter tuning methodology called Grid Search. You will learn what it is, how it works and practice undertaking a Grid Search using Scikit Learn. You will then learn how to analyze the output of a Grid Search & gain practical experience doing this.

    Kapitel Jetzt Abspielen
  3. 3

    Random Search

    In this chapter you will be introduced to another popular automated hyperparameter tuning methodology called Random Search. You will learn what it is, how it works and importantly how it differs from grid search. You will learn some advantages and disadvantages of this method and when to choose this method compared to Grid Search. You will practice undertaking a Random Search with Scikit Learn as well as visualizing & interpreting the output.

    Kapitel Jetzt Abspielen
  4. 4

    Informed Search

    In this final chapter you will be given a taste of more advanced hyperparameter tuning methodologies known as ''informed search''. This includes a methodology known as Coarse To Fine as well as Bayesian & Genetic hyperparameter tuning algorithms. You will learn how informed search differs from uninformed search and gain practical skills with each of the mentioned methodologies, comparing and contrasting them as you go.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Machine Learning Scientist mit Python

Gehe zu Track

Überwachtes Machine Learning in Python

Gehe zu Track

Datensätze

Credit Card Defaults

Mitwirkende

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Chester Ismay
Alex Scriven HeadshotAlex Scriven

Senior Data Scientist @ Atlassian

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Hyperparameter Tuning in Python Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.