Direkt zum Inhalt
StartseitePython

Image Modeling with Keras

Learn to conduct image analysis using Keras with Python by constructing, training, and evaluating convolutional neural networks.

Kurs Kostenlos Starten
4 Stunden13 Videos45 Übungen36.291 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Learn to Use Convolutional Neural Networks in Python

Image model often requires deep learning methods that use data to train neural network algorithms to do various machine learning tasks. Convolutional neural networks (CNNs) are particularly powerful neural networks that you'll use to classify different types of objects for the analysis of images. This four-hour course will teach you how to construct, train, and evaluate CNNs using Keras.

Turning images into data and teaching neural networks to classify them is a challenging element of deep learning with extensive applications throughout business and research, from helping an eCommerce site manage inventory more easily to allowing cancer researchers to quickly spot dangerous melanoma.

Discover Keras CNNs

The first chapter of this course covers how images can be seen as data, and how you can use Keras to train a neural network to classify objects found in images.

The second chapter will cover convolutions, a fundamental part of CNNs. You’ll learn how they operate on image data and learn how to train and tweak your Keras CNN using test data. Later chapters go into more detail and teach you how to create a deep learning network.

Build Your Own Keras Neural Network

You’ll end the course by learning the different ways that you can track how well a CNN is doing and how you can improve their performance. At this point, you’ll be able to build Keras neural networks, optimize them, and visualize their responses across a range of applications.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Bildbearbeitung mit Python

Gehe zu Track

Keras Grundlagen

Gehe zu Track
  1. 1

    Image Processing With Neural Networks

    Kostenlos

    Convolutional neural networks use the data that is represented in images to learn. In this chapter, we will probe data in images, and we will learn how to use Keras to train a neural network to classify objects that appear in images.

    Kapitel Jetzt Abspielen
    Introducing convolutional neural networks
    50 xp
    Images as data: visualizations
    100 xp
    Images as data: changing images
    100 xp
    Classifying images
    50 xp
    Using one-hot encoding to represent images
    100 xp
    Evaluating a classifier
    100 xp
    Classification with Keras
    50 xp
    Build a neural network
    100 xp
    Compile a neural network
    100 xp
    Fitting a neural network model to clothing data
    100 xp
    Cross-validation for neural network evaluation
    100 xp
  2. 3

    Going Deeper

    Convolutional neural networks gain a lot of power when they are constructed with multiple layers (deep networks). In this chapter, you will learn how to stack multiple convolutional layers into a deep network. You will also learn how to keep track of the number of parameters, as the network grows, and how to control this number.

    Kapitel Jetzt Abspielen
  3. 4

    Understanding and Improving Deep Convolutional Networks

    There are many ways to improve training by neural networks. In this chapter, we will focus on our ability to track how well a network is doing, and explore approaches towards improving convolutional neural networks.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Bildbearbeitung mit Python

Gehe zu Track

Keras Grundlagen

Gehe zu Track

Mitwirkende

Collaborator's avatar
Lore Dirick
Collaborator's avatar
Sumedh Panchadhar
Collaborator's avatar
Eunkyung Park

Voraussetzungen

Introduction to Deep Learning with Keras
Ariel Rokem HeadshotAriel Rokem

Senior Data Scientist, University of Washington

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Image Modeling with Keras Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.