Direkt zum Inhalt
StartseitePython

Market Basket Analysis in Python

Explore association rules in market basket analysis with Python by bookstore data and creating movie recommendations.

Kurs Kostenlos Starten
4 Stunden15 Videos52 Übungen12.250 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

What do Amazon product recommendations and Netflix movie suggestions have in common? They both rely on Market Basket Analysis, which is a powerful tool for translating vast amounts of customer transaction and viewing data into simple rules for product promotion and recommendation. In this course, you’ll learn how to perform Market Basket Analysis using the Apriori algorithm, standard and custom metrics, association rules, aggregation and pruning, and visualization. You’ll then reinforce your new skills through interactive exercises, building recommendations for a small grocery store, a library, an e-book seller, a novelty gift retailer, and a movie streaming service. In the process, you’ll uncover hidden insights to improve recommendations for customers.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Marketing-Analytik mit Python

Gehe zu Track
  1. 1

    Introduction to Market Basket Analysis

    Kostenlos

    In this chapter, you’ll learn the basics of Market Basket Analysis: association rules, metrics, and pruning. You’ll then apply these concepts to help a small grocery store improve its promotional and product placement efforts.

    Kapitel Jetzt Abspielen
    What is market basket analysis?
    50 xp
    The basics of market basket analysis
    50 xp
    Cross-selling products
    100 xp
    Identifying association rules
    50 xp
    Multiple antecedents and consequents
    100 xp
    Preparing data for market basket analysis
    100 xp
    Generating association rules
    100 xp
    The simplest metric
    50 xp
    One-hot encoding transaction data
    100 xp
    Computing the support metric
    100 xp
  2. 2

    Association Rules

    Association rules tell us that two or more items are related. Metrics allow us to quantify the usefulness of those relationships. In this chapter, you’ll apply six metrics to evaluate association rules: supply, confidence, lift, conviction, leverage, and Zhang's metric. You’ll then use association rules and metrics to assist a library and an e-book seller.

    Kapitel Jetzt Abspielen
  3. 3

    Aggregation and Pruning

    The fundamental problem of Market Basket Analysis is determining how to translate vast amounts of customer decisions into a small number of useful rules. This process typically starts with the application of the Apriori algorithm and involves the use of additional strategies, such as pruning and aggregation. In this chapter, you’ll learn how to use these methods and will ultimately apply them in exercises where you assist a retailer in selecting a physical store layout and performing product cross-promotions.

    Kapitel Jetzt Abspielen
  4. 4

    Visualizing Rules

    In this final chapter, you’ll learn how visualizations are used to guide the pruning process and summarize final results, which will typically take the form of itemsets or rules. You’ll master the three most useful visualizations -- heatmaps, scatterplots, and parallel coordinates plots – and will apply them to assist a movie streaming service.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Marketing-Analytik mit Python

Gehe zu Track

Datensätze

Online Retail datasetBookstore TransactionsMovielens Ratings dataset

Mitwirkende

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Adel Nehme
Isaiah Hull HeadshotIsaiah Hull

Economist

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Market Basket Analysis in Python Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.