Network Analysis in R
Learn to analyze and visualize network data with the igraph package and create interactive network plots with threejs.
Kurs Kostenlos Starten4 Stunden12 Videos50 Übungen19.828 LernendeLeistungsnachweis
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.Trainierst du 2 oder mehr?
Versuchen DataCamp for BusinessBeliebt bei Lernenden in Tausenden Unternehmen
Kursbeschreibung
Get an Introduction to Networks
Discover the fundamental concepts in network analysis. This course begins by taking you through the basics of social networks, vertices and edges, and how you can use the igraph R package to explore and visualize network data.You’ll move on to looking at directed networks in more detail, including the identification of key relationships between vertices and applying your new skills to a network data set looking at measles transmission in Hagelloch.
Understand Network Structures and Graphs
Learn to characterize network structures and substructures by looking at network density and average path length. The third chapter of this course takes you through randomization and random graphs, before moving on to triangles, transitivity, and visualizing cliques.Identify Relationships Using Assortativity in igraph
Assortativity determines how likely two vertices are to be attached to each other if they share a common attribute - whether that’s numerical or categorical. You’ll explore the ASSORTATIVITY function within igraph to determine the impact of gender on a friendship network dataset, and will apply randomizations to assess your findings.Create Interactive Network Plots using threejs
At the end of this course, you’ll expand your knowledge beyond igraph to explore the network visualization capabilities of threejs. You’ll make your first interactive network plots using this R package, and will look at how you can further develop your visualization.Trainierst du 2 oder mehr?
Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.In den folgenden Tracks
Netzwerkanalyse mit R
Gehe zu Track- 1
Introduction to networks
KostenlosIn this chapter, you will be introduced to fundamental concepts in social network analysis. You will learn how to use the
igraph
R package to explore and analyze social network data as well as learning how to visualize networks.What are social networks?50 xpCreating an igraph object100 xpCounting vertices and edges100 xpNetwork attributes50 xpNode attributes and subsetting100 xpEdge attributes and subsetting100 xpVisualizing attributes100 xpQuiz on attributes50 xpNetwork visualization50 xpigraph network layouts100 xpVisualizing edges100 xpQuiz on igraph objects50 xp - 2
Identifying important vertices in a network
In this chapter you will learn about directed networks. You will also learn how to identify key relationships between vertices in a network as well as how to use these relationships to identify important or influential vertices. Throughout this chapter you will use a network of measles transmission. The data come from the German city of Hagelloch in 1861. Each directed edge of the network indicates a child becoming infected with measles after coming into contact with an infected child.
Directed networks50 xpDirected igraph objects100 xpIdentifying edges for each vertex100 xpRelationships between vertices50 xpNeighbors100 xpDistances between vertices100 xpFinding longest path between two vertices50 xpImportant and influential vertices50 xpIdentifying key vertices100 xpBetweenness100 xpVisualizing important nodes and edges100 xpImportant vertices quiz50 xp - 3
Characterizing network structures
This module will show how to characterize global network structures and sub-structures. It will also introduce generating random network graphs.
Introduction50 xpForrest Gump network100 xpNetwork density and average path length100 xpGraph density quiz50 xpUnderstanding network structures50 xpRandom graphs100 xpNetwork randomizations100 xpRandomization quiz50 xpNetwork substructures50 xpTriangles and transitivity100 xpTransitivity randomizations100 xpCliques100 xpVisualize largest cliques100 xp - 4
Identifying special relationships
This chapter will further explore the partitioning of networks into sub-networks and determining which vertices are more highly related to one another than others. You will also develop visualization methods by creating three-dimensional visualizations.
Close relationships: assortativity & reciprocity50 xpAssortativity100 xpUsing randomizations to assess assortativity100 xpReciprocity100 xpAssortativity quiz50 xpCommunity detection50 xpFast-greedy community detection100 xpEdge-betweenness community detection100 xpCommunity quiz50 xpInteractive network visualizations50 xpInteractive networks with threejs100 xpSizing vertices in threejs100 xp3D community network graph100 xp
Trainierst du 2 oder mehr?
Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.In den folgenden Tracks
Netzwerkanalyse mit R
Gehe zu TrackDatensätze
Friendship network dataFriendship network edge dataFriendship network node dataForrest Gump network dataMeasles network dataMitwirkende
Voraussetzungen
Intermediate RJAMES CURLEY
Mehr AnzeigenAssociate Professor at UT Austin
Was sagen andere Lernende?
Melden Sie sich an 15 Millionen Lernende und starten Sie Network Analysis in R Heute!
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.