Direkt zum Inhalt
StartseitePython

Preprocessing for Machine Learning in Python

Learn how to clean and prepare your data for machine learning!

Kurs Kostenlos Starten
4 Stunden20 Videos62 Übungen50.958 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

This course covers the basics of how and when to perform data preprocessing. This essential step in any machine learning project is when you get your data ready for modeling. Between importing and cleaning your data and fitting your machine learning model is when preprocessing comes into play. You'll learn how to standardize your data so that it's in the right form for your model, create new features to best leverage the information in your dataset, and select the best features to improve your model fit. Finally, you'll have some practice preprocessing by getting a dataset on UFO sightings ready for modeling.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Zertifizierung verfügbar

Datenwissenschaftler/in in Python

Gehe zu Track

Machine Learning Scientist mit Python

Gehe zu Track
  1. 1

    Introduction to Data Preprocessing

    Kostenlos

    In this chapter you'll learn exactly what it means to preprocess data. You'll take the first steps in any preprocessing journey, including exploring data types and dealing with missing data.

    Kapitel Jetzt Abspielen
    Introduction to preprocessing
    50 xp
    Exploring missing data
    50 xp
    Dropping missing data
    100 xp
    Working with data types
    50 xp
    Exploring data types
    50 xp
    Converting a column type
    100 xp
    Training and test sets
    50 xp
    Class imbalance
    50 xp
    Stratified sampling
    100 xp
  2. 2

    Standardizing Data

    This chapter is all about standardizing data. Often a model will make some assumptions about the distribution or scale of your features. Standardization is a way to make your data fit these assumptions and improve the algorithm's performance.

    Kapitel Jetzt Abspielen
  3. 4

    Selecting Features for Modeling

    This chapter goes over a few different techniques for selecting the most important features from your dataset. You'll learn how to drop redundant features, work with text vectors, and reduce the number of features in your dataset using principal component analysis (PCA).

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Zertifizierung verfügbar

Datenwissenschaftler/in in Python

Gehe zu Track

Machine Learning Scientist mit Python

Gehe zu Track

Datensätze

Hiking dataWine dataUFO sightings dataVolunteering data

Mitwirkende

Collaborator's avatar
Nick Solomon
Collaborator's avatar
Kara Woo
James Chapman HeadshotJames Chapman

Curriculum Manager, DataCamp

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Preprocessing for Machine Learning in Python Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.