Direkt zum Inhalt
StartseiteR

Visualization Best Practices in R

Learn to effectively convey your data with an overview of common charts, alternative visualization types, and perception-driven style enhancements.

Kurs Kostenlos Starten
4 Stunden13 Videos49 Übungen17.508 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

This course will help you take your data visualization skills beyond the basics and hone them into a powerful member of your data science toolkit. Over the lessons we will use two interesting open datasets to cover different types of data (proportions, point-data, single distributions, and multiple distributions) and discuss the pros and cons of the most common visualizations. In addition, we will cover some less common alternatives visualizations for the data types and how to tweak default ggplot settings to most efficiently and effectively get your message across.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Datenvisualisierung mit R

Gehe zu Track
  1. 1

    Proportions of a whole

    Kostenlos

    In this chapter, we focus on visualizing proportions of a whole; we see that pie charts really aren't so bad, along with discussing the waffle chart and stacked bars for comparing multiple proportions.

    Kapitel Jetzt Abspielen
    Grammar of Graphics intro
    50 xp
    Familiarizing with disease data
    100 xp
    Warming up data-wrangling
    100 xp
    The pie chart and its friends
    50 xp
    The infamous P-I-E
    100 xp
    Cleaning up the pie
    100 xp
    How about a waffle?
    100 xp
    When to use bars
    50 xp
    Basic stacked bars
    100 xp
    Ordering stack for readability
    100 xp
    Categorical x-axis
    100 xp
  2. 2

    Point data

    We shift our focus now to single-observation or point data and go over when bar charts are appropriate and when they are not, what to use when they are not, and general perception-based enhancements for your charts.

    Kapitel Jetzt Abspielen
  3. 3

    Single distributions

    We now move on to visualizing distributional data, we expose the fragility of histograms, discuss when it is better to shift to a kernel density plots, and how to make both plots work best for your data.

    Kapitel Jetzt Abspielen
  4. 4

    Comparing distributions

    Finishing off we take a look at comparing multiple distributions to each other. We see why the traditional box plots are very dangerous and how to easily improve them, along with investigating when you should use more advanced alternatives like the beeswarm plot and violin plots.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Datenvisualisierung mit R

Gehe zu Track

Datensätze

World Health Organization Disease Dataset

Mitwirkende

Collaborator's avatar
Chester Ismay
Collaborator's avatar
David Campos
Collaborator's avatar
Shon Inouye
Nicholas Strayer HeadshotNicholas Strayer

Biostatistician at Vanderbilt

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Visualization Best Practices in R Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.