Direkt zum Inhalt
StartseitePython

Working with Categorical Data in Python

Learn how to manipulate and visualize categorical data using pandas and seaborn.

Kurs Kostenlos Starten
4 Stunden15 Videos52 Übungen22.225 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Being able to understand, use, and summarize non-numerical data—such as a person’s blood type or marital status—is a vital component of being a data scientist. In this course, you’ll learn how to manipulate and visualize categorical data using pandas and seaborn. Through hands-on exercises, you’ll get to grips with pandas' categorical data type, including how to create, delete, and update categorical columns. You’ll also work with a wide range of datasets including the characteristics of adoptable dogs, Las Vegas trip reviews, and census data to develop your skills at working with categorical data.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Zertifizierung verfügbar

Associate Data Scientist in Python

Gehe zu Track
  1. 1

    Introduction to Categorical Data

    Kostenlos

    Almost every dataset contains categorical information—and often it’s an unexplored goldmine of information. In this chapter, you’ll learn how pandas handles categorical columns using the data type category. You’ll also discover how to group data by categories to unearth great summary statistics.

    Kapitel Jetzt Abspielen
    Course introduction
    50 xp
    Categorical vs. numerical
    100 xp
    Exploring a target variable
    100 xp
    Ordinal categorical variables
    100 xp
    Categorical data in pandas
    50 xp
    Setting dtypes and saving memory
    100 xp
    Creating a categorical pandas Series
    100 xp
    Setting dtype when reading data
    100 xp
    Grouping data by category in pandas
    50 xp
    Create lots of groups
    50 xp
    Setting up a .groupby() statement
    100 xp
    Using pandas functions effectively
    100 xp
  2. 2

    Categorical pandas Series

    Now it’s time to learn how to set, add, and remove categories from a Series. You’ll also explore how to update, rename, collapse, and reorder categories, before applying your new skills to clean and access other data within your DataFrame.

    Kapitel Jetzt Abspielen
  3. 3

    Visualizing Categorical Data

    In this chapter, you’ll use the seaborn Python library to create informative visualizations using categorical data—including categorical plots (cat-plot), box plots, bar plots, point plots, and count plots. You’ll then learn how to visualize categorical columns and split data across categorical columns to visualize summary statistics of numerical columns.

    Kapitel Jetzt Abspielen
  4. 4

    Pitfalls and Encoding

    Lastly, you’ll learn how to overcome the common pitfalls of using categorical data. You’ll also grow your data encoding skills as you are introduced to label encoding and one-hot encoding—perfect for helping you prepare your data for use in machine learning algorithms.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Zertifizierung verfügbar

Associate Data Scientist in Python

Gehe zu Track

Datensätze

Adult Census IncomeAdoptable DogsTripadvisor ReviewsUsed Cars

Mitwirkende

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Justin Saddlemyer
Kasey Jones HeadshotKasey Jones

Research Data Scientist

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Working with Categorical Data in Python Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.