Direkt zum Inhalt
StartseitePython

Working with Hugging Face

Navigate and use the extensive repository of models and datasets available on the Hugging Face Hub.

Kurs Kostenlos Starten
4 Stunden16 Videos57 Übungen4.558 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

In today's rapidly evolving landscape of machine learning (ML) and artificial intelligence (AI), Hugging Face stands out as a vital platform, allowing anyone to leverage the latest advancements in their projects.

Explore the Hugging Face Hub

To begin, you'll navigate the Hugging Face Hub's vast model and dataset repository. You'll also discover the power of Large Language Models and Transformers, exploring the diverse range available. You'll discover how the models and datasets can be applied to tasks ranging from sentiment analysis to language translation. Furthermore, we'll extend our exploration to image and audio processing.

Master Pipelines for Text, Images, and Audio

Pipelines are the backbone of many ML and AI workflows. You'll start with the basics of the pipeline module and Auto classes from the transformers library. Then, you'll build pipelines for natural language processing tasks before moving on to image and audio processing, ensuring you have the tools to tackle a wide range of tasks efficiently.

Fine-Tune Models and Leverage Embeddings

Finally, you'll dive into different frameworks for fine-tuning, text generation, and embeddings. You'll go through a fine-tuning example before exploring the concept of embeddings in machine learning, understanding how they capture semantic information. By the end of the course, you'll be equipped with the knowledge and skills to tackle a wide range of ML and AI tasks effectively using the Hugging Face Hub.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Associate AI Engineer für Entwickler

Gehe zu Track

Entwicklung von AI-Anwendungen

Gehe zu Track
  1. 1

    Getting Started with Hugging Face

    Kostenlos

    Start your journey with the Hugging Face platform by understanding what Hugging Face is and common use cases. Then, you'll learn about the Hugging Face Hub including models and datasets available, how to search for them, navigate model, or dataset, cards, and download. Lastly, you'll learn about the high-level components of transformers and LLMs.

    Kapitel Jetzt Abspielen
    Introduction to Hugging Face
    50 xp
    What are Large Language Models?
    50 xp
    Use cases for Hugging Face
    100 xp
    Transformers and the Hub
    50 xp
    Transformer components
    50 xp
    Searching the Hub with Python
    100 xp
    Saving a model
    100 xp
    Working with datasets
    50 xp
    Inspecting datasets
    100 xp
    Loading datasets
    100 xp
    Manipulating datasets
    100 xp
  2. 2

    Building Pipelines with Hugging Face

    It's time to dive into the Hugging Face ecosystem! You'll start by learning the basics of the pipeline module and Auto classes from the transformers library. Then, you'll learn at a high level what natural language processing and tokenization is. Finally, you'll start using the pipeline module for several text-based tasks, including text classification.

    Kapitel Jetzt Abspielen
  3. 4

    Fine-tuning and Embeddings

    Explore the different frameworks for fine-tuning, text generation, and embeddings. Start with the basics of fine-tuning a pre-trained model on a specific dataset and task to improve performance. Then, use Auto classes to generate the text from prompts and images. Finally, you will explore how to generate and use embeddings.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Associate AI Engineer für Entwickler

Gehe zu Track

Entwicklung von AI-Anwendungen

Gehe zu Track

Datensätze

english.arrowimdb_train.arrowimdb_test.arrowcommon_language.arrow

Mitwirkende

Collaborator's avatar
James Chapman
Collaborator's avatar
Jasmin Ludolf
Collaborator's avatar
Jordan Beecher

Audio aufgenommen von

Jacob Marquez's avatar
Jacob Marquez
Jacob Marquez HeadshotJacob Marquez

Data Scientist at Microsoft

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Working with Hugging Face Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.