Direkt zum Inhalt
StartseiteR

Projekt

Clustering Heart Disease Patient Data

Anfänger
Updated 06/2024
Experiment with clustering algorithms to help doctors inform treatment for heart disease patients.
Projekt Kostenlos Starten

Im Lieferumfang enthaltenPremium or Teams

10 Tasks1,500 XP4,194

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Project Description

Doctors frequently study former cases to learn how to best treat their patients. A patient who has a similar health history or symptoms to a previous patient could benefit from undergoing the same treatment. This project investigates whether doctors might be able to group together patients to target treatments using common unsupervised learning techniques. In this project you will use k-means and hierarchical clustering algorithms.

The dataset for this project contains characteristics of patients diagnosed with heart disease. It can be found here.

Project Tasks

  1. 1
    Targeting treatment for heart disease patients
  2. 2
    Quantifying patient differences
  3. 3
    Let's start grouping patients
  4. 4
    Another round of k-means
  5. 5
    Comparing patient clusters
  6. 6
    Hierarchical clustering: another clustering approach
  7. 7
    Hierarchical clustering round two
  8. 8
    Comparing clustering results
  9. 9
    Visualizing the cluster contents
  10. 10
    Conclusion

Technologies

R R

Topics

Data ManipulationData VisualizationMachine Learning
Megan Robertson HeadshotMegan Robertson

Data Scientist

Mehr Anzeigen

What do other learners have to say?