Direkt zum Inhalt
StartseiteR

Analyzing Survey Data in R

Learn survey design using common design structures followed by visualizing and analyzing survey results.

Kurs Kostenlos Starten
4 Stunden14 Videos49 Übungen13.299 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

You've taken a survey (or 1000) before, right? Have you ever wondered what goes into designing a survey and how survey responses are turned into actionable insights? Of course you have! In Analyzing Survey Data in R, you will work with surveys from A to Z, starting with common survey design structures, such as clustering and stratification, and will continue through to visualizing and analyzing survey results. You will model survey data from the National Health and Nutrition Examination Survey using R's survey and tidyverse packages. Following the course, you will be able to successfully interpret survey results and finally find the answers to life's burning questions!
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Statistiker mit R

Gehe zu Track
  1. 1

    Introduction to survey data

    Kostenlos

    Our exploration of survey data will begin with survey weights. In this chapter, we will learn what survey weights are and why they are so important in survey data analysis. Another unique feature of survey data are how they were collected via clustering and stratification. We'll practice specifying and exploring these sampling features for several survey datasets.

    Kapitel Jetzt Abspielen
    What are survey weights?
    50 xp
    Survey weights
    50 xp
    Visualizing the weights
    100 xp
    Specifying elements of the design in R
    50 xp
    Designs in R
    100 xp
    Stratified designs in R
    100 xp
    Cluster designs in R
    100 xp
    Comparing survey weights of different designs
    100 xp
    Visualizing the impact of survey weights
    50 xp
    NHANES weights
    100 xp
    Tying it all together!
    100 xp
  2. 2

    Exploring categorical data

    Now that we have a handle of survey weights, we will practice incorporating those weights into our analysis of categorical data in this chapter. We'll conduct descriptive inference by calculating summary statistics, building summary tables, and constructing bar graphs. For analytic inference, we will learn to run chi-squared tests.

    Kapitel Jetzt Abspielen
  3. 3

    Exploring quantitative data

    Of course not all survey data are categorical and so in this chapter, we will explore analyzing quantitative survey data. We will learn to compute survey-weighted statistics, such as the mean and quantiles. For data visualization, we'll construct bar-graphs, histograms and density plots. We will close out the chapter by conducting analytic inference with survey-weighted t-tests.

    Kapitel Jetzt Abspielen
  4. 4

    Modeling quantitative data

    To model survey data also requires careful consideration of how the data were collected. We will start our modeling chapter by learning how to incorporate survey weights into scatter plots through aesthetics such as size, color, and transparency. We'll model the survey data with linear regression and will explore how to incorporate categorical predictors and polynomial terms into our models.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Statistiker mit R

Gehe zu Track

Datensätze

Quarter 4 of the 2016 BLS Consumer Expenditure Survey

Mitwirkende

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins
Collaborator's avatar
Eunkyung Park
Kelly McConville HeadshotKelly McConville

Assistant Professor of Statistics at Reed College

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Analyzing Survey Data in R Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.