Direkt zum Inhalt
StartseiteR

GARCH Models in R

Specify and fit GARCH models to forecast time-varying volatility and value-at-risk.

Kurs Kostenlos Starten
4 Stunden16 Videos60 Übungen7.610 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Are you curious about the rhythm of the financial market's heartbeat? Do you want to know when a stable market becomes turbulent? In this course on GARCH models you will learn the forward looking approach to balancing risk and reward in financial decision making. The course gradually moves from the standard normal GARCH(1,1) model to more advanced volatility models with a leverage effect, GARCH-in-mean specification and the use of the skewed student t distribution for modelling asset returns. Applications on stock and exchange rate returns include portfolio optimization, rolling sample forecast evaluation, value-at-risk forecasting and studying dynamic covariances.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Angewandte Finanzen in R

Gehe zu Track
  1. 1

    The Standard GARCH Model as the Workhorse Model

    Kostenlos

    We start off by making our hands dirty. A rolling window analysis of daily stock returns shows that its standard deviation changes massively through time. Looking back at the past, we thus have clear evidence of time-varying volatility. Looking forward, we need to estimate the volatility of future returns. This is essentially what a GARCH model does! In this chapter, you will learn the basics of using the rugarch package for specifying and estimating the workhorse GARCH(1,1) model in R. We end by showing its usefulness in tactical asset allocation.

    Kapitel Jetzt Abspielen
    Analyzing volatility
    50 xp
    Computing returns
    100 xp
    Standard deviation on subsamples
    100 xp
    Roll, roll, roll
    100 xp
    The GARCH equation for volatility prediction
    50 xp
    GARCH(1,1) reaction to one-off shocks
    50 xp
    Prediction errors
    100 xp
    The recursive nature of the GARCH variance
    100 xp
    The rugarch package
    50 xp
    Specify and taste the GARCH model flavors
    100 xp
    Out-of-sample forecasting
    100 xp
    Volatility targeting in tactical asset allocation
    100 xp
  2. 2

    Improvements of the Normal GARCH Model

    Markets take the stairs up and the elevator down. This Wallstreet wisdom has important consequences for specifying a realistic volatility model. It requires to give up the assumption of normality, as well as the symmetric response of volatility to shocks. In this chapter, you will learn about GARCH models with a leverage effect and skewed student t innovations. At the end, you will be able to use GARCH models for estimating over ten thousand different GARCH model specifications.

    Kapitel Jetzt Abspielen
  3. 3

    Performance Evaluation

    GARCH models yield volatility forecasts which serve as input for financial decision making. Their use in practice requires to first evaluate the goodness of the volatility forecast. In this chapter, you will learn about the analysis of statistical significance of the estimated GARCH parameters, the properties of standardized returns, the interpretation of information criteria and the use of rolling GARCH estimation and mean squared prediction errors to analyze the accuracy of the volatility forecast.

    Kapitel Jetzt Abspielen
  4. 4

    Applications

    At this stage, you master the standard specification, estimation and validation of GARCH models in the rugarch package. This chapter introduces specific rugarch functionality for making value-at-risk estimates, for using the GARCH model in production and for simulating GARCH returns. You will also discover that the presence of GARCH dynamics in the variance has implications for simulating log-returns, the estimation of the beta of a stock and finding the minimum variance portfolio.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Angewandte Finanzen in R

Gehe zu Track

Datensätze

Daily EUR/USD returnsDaily Microsoft returnsS&P 500 pricesS&P 500 returnsSimulated return data

Mitwirkende

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Sara Billen
Collaborator's avatar
Chester Ismay
Kris Boudt HeadshotKris Boudt

Professor of Finance and Econometrics at VUB and VUA

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie GARCH Models in R Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.