Sampling in R
Master sampling to get more accurate statistics with less data.
Kurs Kostenlos Starten4 Stunden15 Videos51 Übungen18.045 LernendeLeistungsnachweis
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.Trainierst du 2 oder mehr?
Versuchen DataCamp for BusinessBeliebt bei Lernenden in Tausenden Unternehmen
Kursbeschreibung
Sampling is a cornerstone of inference statistics and hypothesis testing. It's tremendously important in survey analysis and experimental design. This course explains when and why sampling is important, teaches you how to perform common types of sampling, from simple random sampling to more complex methods like stratified and cluster sampling. Later, the course covers estimating population statistics, and quantifying uncertainty in your estimates by generating sampling distributions and bootstrap distributions. Throughout the course, you'll explore real-world datasets on coffee ratings, Spotify songs, and employee attrition.
Trainierst du 2 oder mehr?
Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.In den folgenden Tracks
Statistiker mit R
Gehe zu Track- 1
Introduction to Sampling
KostenlosLearn what sampling is and why it is useful, understand the problems caused by convenience sampling, and learn about the differences between true randomness and pseudo-randomness.
Sampling and point estimates50 xpReasons for sampling50 xpSimple sampling with dplyr100 xpSimple sampling with base-R100 xpConvenience sampling50 xpAre findings from the sample generalizable?100 xpAre these findings generalizable?100 xpPseudo-random number generation50 xpGenerating random numbers100 xpUnderstanding random seeds100 xp - 2
Sampling Methods
Learn how to and when to perform the four methods of random sampling: simple, systematic, stratified, and cluster.
Simple random and systematic sampling50 xpSimple random sampling100 xpSystematic sampling100 xpIs systematic sampling OK?100 xpStratified and weighted random sampling50 xpWhich sampling method?100 xpProportional stratified sampling100 xpEqual counts stratified sampling100 xpWeighted sampling100 xpCluster sampling50 xpBenefits of clustering50 xpPerforming cluster sampling100 xpComparing sampling methods50 xp3 kinds of sampling100 xpSummary statistics on different kinds of sample100 xp - 3
Sampling Distributions
Learn how to quantify the accuracy of sample statistics using relative errors, and measure variation in your estimates by generating sampling distributions.
Relative error of point estimates50 xpCalculating relative errors100 xpRelative error vs. sample size50 xpCreating a sampling distribution50 xpReplicating samples100 xpReplication parameters50 xpApproximate sampling distributions50 xpExact sampling distribution100 xpApproximate sampling distribution100 xpExact vs. approximate50 xpStandard errors and the Central Limit Theorem50 xpPopulation & sampling distribution means100 xpPopulation and sampling distribution variation100 xp - 4
Bootstrap Distributions
Learn how to use resampling to perform bootstrapping, used to estimate variation in an unknown population. Understand the difference between sampling distributions and bootstrap distributions.
Introduction to bootstrapping50 xpPrinciples of bootstrapping100 xpWith or without replacement100 xpGenerating a bootstrap distribution100 xpComparing sampling and bootstrap distributions50 xpBootstrap statistics and population statistics50 xpSampling distribution vs. bootstrap distribution100 xpCompare sampling and bootstrap means100 xpCompare sampling and bootstrap standard deviations100 xpConfidence intervals50 xpConfidence interval interpretation50 xpCalculating confidence intervals100 xpCongratulations!50 xp
Trainierst du 2 oder mehr?
Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.In den folgenden Tracks
Statistiker mit R
Gehe zu TrackIn anderen Tracks
Grundlagen der Statistik mit RMitwirkende
Voraussetzungen
Introduction to Statistics in RRichie Cotton
Mehr AnzeigenData Evangelist at DataCamp
Was sagen andere Lernende?
Melden Sie sich an 15 Millionen Lernende und starten Sie Sampling in R Heute!
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.