Direkt zum Inhalt
StartseiteR

Support Vector Machines in R

This course will introduce the support vector machine (SVM) using an intuitive, visual approach.

Kurs Kostenlos Starten
4 Stunden13 Videos47 Übungen10.219 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

This course will introduce a powerful classifier, the support vector machine (SVM) using an intuitive, visual approach. Support Vector Machines in R will help students develop an understanding of the SVM model as a classifier and gain practical experience using R’s libsvm implementation from the e1071 package. Along the way, students will gain an intuitive understanding of important concepts, such as hard and soft margins, the kernel trick, different types of kernels, and how to tune SVM parameters. Get ready to classify data with this impressive model.
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Machine Learning Scientist mit R

Gehe zu Track

Überwachtes Machine Learning in R

Gehe zu Track
  1. 1

    Introduction

    Kostenlos

    This chapter introduces some key concepts of support vector machines through a simple 1-dimensional example. Students are also walked through the creation of a linearly separable dataset that is used in the subsequent chapter.

    Kapitel Jetzt Abspielen
    Sugar content of soft drinks
    50 xp
    Visualizing a sugar content dataset
    100 xp
    Identifying decision boundaries
    50 xp
    Find the maximal margin separator
    100 xp
    Visualize the maximal margin separator
    100 xp
    Generating a linearly separable dataset
    50 xp
    Generate a 2d uniformly distributed dataset.
    100 xp
    Create a decision boundary
    100 xp
    Introduce a margin in the dataset
    100 xp
  2. 2

    Support Vector Classifiers - Linear Kernels

    Introduces students to the basic concepts of support vector machines by applying the svm algorithm to a dataset that is linearly separable. Key concepts are illustrated through ggplot visualisations that are built from the outputs of the algorithm and the role of the cost parameter is highlighted via a simple example. The chapter closes with a section on how the algorithm deals with multiclass problems.

    Kapitel Jetzt Abspielen
  3. 3

    Polynomial Kernels

    Provides an introduction to polynomial kernels via a dataset that is radially separable (i.e. has a circular decision boundary). After demonstrating the inadequacy of linear kernels for this dataset, students will see how a simple transformation renders the problem linearly separable thus motivating an intuitive discussion of the kernel trick. Students will then apply the polynomial kernel to the dataset and tune the resulting classifier.

    Kapitel Jetzt Abspielen
  4. 4

    Radial Basis Function Kernels

    Builds on the previous three chapters by introducing the highly flexible Radial Basis Function (RBF) kernel. Students will create a "complex" dataset that shows up the limitations of polynomial kernels. Then, following an intuitive motivation for the RBF kernel, students see how it addresses the shortcomings of the other kernels discussed in this course.

    Kapitel Jetzt Abspielen
Für Unternehmen

Trainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

Machine Learning Scientist mit R

Gehe zu Track

Überwachtes Machine Learning in R

Gehe zu Track

Mitwirkende

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins

Voraussetzungen

Introduction to R
Kailash Awati HeadshotKailash Awati

Senior Lecturer at University of Technology Sydney.

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Support Vector Machines in R Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.