Pular para o conteúdo principal
InícioPython

Advanced NLP with spaCy

Learn how to use spaCy to build advanced natural language understanding systems, using both rule-based and machine learning approaches.

Comece O Curso Gratuitamente
5 horas15 vídeos55 exercícios20.465 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

If you're working with a lot of text, you'll eventually want to know more about it. For example, what's it about? What do the words mean in context? Who is doing what to whom? What companies and products are mentioned? Which texts are similar to each other? In this course, you'll learn how to use spaCy, a fast-growing industry standard library for NLP in Python, to build advanced natural language understanding systems, using both rule-based and machine learning approaches.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    Finding words, phrases, names and concepts

    Gratuito

    This chapter will introduce you to the basics of text processing with spaCy. You'll learn about the data structures, how to work with statistical models, and how to use them to predict linguistic features in your text.

    Reproduzir Capítulo Agora
    Introduction to spaCy
    50 xp
    Getting Started
    100 xp
    Documents, spans and tokens
    100 xp
    Lexical attributes
    100 xp
    Statistical models
    50 xp
    Model packages
    50 xp
    Loading models
    100 xp
    Predicting linguistic annotations
    100 xp
    Predicting named entities in context
    100 xp
    Rule-based matching
    50 xp
    Using the Matcher
    100 xp
    Writing match patterns
    100 xp
  2. 3

    Processing Pipelines

    This chapter will show you to everything you need to know about spaCy's processing pipeline. You'll learn what goes on under the hood when you process a text, how to write your own components and add them to the pipeline, and how to use custom attributes to add your own meta data to the documents, spans and tokens.

    Reproduzir Capítulo Agora
  3. 4

    Training a neural network model

    In this chapter, you'll learn how to update spaCy's statistical models to customize them for your use case – for example, to predict a new entity type in online comments. You'll write your own training loop from scratch, and understand the basics of how training works, along with tips and tricks that can make your custom NLP projects more successful.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

colaboradores

Collaborator's avatar
Mari Nazary
Collaborator's avatar
Adrián Soto

pré-requisitos

Introduction to Natural Language Processing in Python
Ines Montani HeadshotInes Montani

spaCy core developer and co-founder of Explosion AI

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Advanced NLP with spaCy hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.