Pular para o conteúdo principal
InícioSpark

Feature Engineering with PySpark

Learn the gritty details that data scientists are spending 70-80% of their time on; data wrangling and feature engineering.

Comece O Curso Gratuitamente
4 horas16 vídeos60 exercícios14.743 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

The real world is messy and your job is to make sense of it. Toy datasets like MTCars and Iris are the result of careful curation and cleaning, even so the data needs to be transformed for it to be useful for powerful machine learning algorithms to extract meaning, forecast, classify or cluster. This course will cover the gritty details that data scientists are spending 70-80% of their time on; data wrangling and feature engineering. With size of datasets now becoming ever larger, let's use PySpark to cut this Big Data problem down to size!
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Big Data com PySpark

Ir para a trilha
  1. 1

    Exploratory Data Analysis

    Gratuito

    Get to know a bit about your problem before you dive in! Then learn how to statistically and visually inspect your dataset!

    Reproduzir Capítulo Agora
    Where to Begin
    50 xp
    Where to begin?
    50 xp
    Check Version
    100 xp
    Load in the data
    100 xp
    Defining A Problem
    50 xp
    What are we predicting?
    100 xp
    Verifying Data Load
    100 xp
    Verifying DataTypes
    100 xp
    Visually Inspecting Data / EDA
    50 xp
    Using Corr()
    100 xp
    Using Visualizations: distplot
    100 xp
    Using Visualizations: lmplot
    100 xp
  2. 3

    Feature Engineering

    In this chapter learn how to create new features for your machine learning model to learn from. We'll look at generating them by combining fields, extracting values from messy columns or encoding them for better results.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

Nas seguintes faixas

Big Data com PySpark

Ir para a trilha

conjuntos de dados

2017 St Paul MN Real Estate Dataset

colaboradores

Collaborator's avatar
Adrián Soto
Collaborator's avatar
Nick Solomon
John Hogue HeadshotJohn Hogue

Lead Data Scientist, General Mills

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Feature Engineering with PySpark hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.