Pular para o conteúdo principal
InícioPython

curso

Projeto experimental em Python

Intermediário
Updated 12/2024
Implemente designs experimentais e realize análises estatísticas robustas para conclusões precisas e válidas!
Iniciar curso gratuitamente

Incluído gratuitamentePremium or Teams

PythonProbabilidade e estatística4 horas14 vídeos47 exercícios3,700 XP4,866Declaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

Implementar configurações de projeto experimental

Saiba como implementar a configuração de projeto experimental mais adequada para seu caso de uso. Saiba como os projetos de blocos aleatórios e os projetos fatoriais podem ser implementados para medir os efeitos do tratamento e tirar conclusões válidas e precisas.

Realizar análises estatísticas de dados experimentais

Aprofunde-se na realização de análises estatísticas de dados experimentais, incluindo a seleção e a realização de testes estatísticos, como testes t, testes ANOVA e testes qui-quadrado de associação. Realize análises post-hoc seguindo os testes ANOVA para descobrir com precisão quais comparações entre pares são significativamente diferentes.

Conduzir análise de energia

Aprenda a medir o tamanho do efeito para determinar a quantidade pela qual os grupos diferem, além de serem significativamente diferentes. Realize uma análise de poder usando um tamanho de efeito presumido para determinar o tamanho mínimo de amostra necessário para obter o poder estatístico exigido. Use a formulação d de Cohen para medir o tamanho do efeito de alguns dados de amostra e teste se as suposições do tamanho do efeito usadas na análise de potência foram precisas.

Abordar as complexidades dos dados experimentais

Extraia insights de dados experimentais complexos e aprenda as práticas recomendadas para comunicar as descobertas a diferentes partes interessadas. Aborde complexidades como interações, heterocedasticidade e confusão em dados experimentais para melhorar a validade de suas conclusões. Quando os dados não atenderem às premissas dos testes paramétricos, você aprenderá a escolher e implementar um teste não paramétrico apropriado.

Pré-requisitos

Hypothesis Testing in Python
1

Preliminares do projeto experimental

Iniciar capítulo
2

Técnicas de projeto experimental

Iniciar capítulo
3

Análise de dados experimentais: Testes estatísticos e potência

Iniciar capítulo
4

Insights avançados da complexidade experimental

Iniciar capítulo
Projeto experimental em Python
Curso
Completo

Declaração de Realização Earn

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 15 milhões de alunos e comece Projeto experimental em Python Hoje!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.