HR Analytics: Predicting Employee Churn in Python
In this course you'll learn how to apply machine learning in the HR domain.
Comece O Curso Gratuitamente4 horas14 vídeos44 exercícios8.197 aprendizesDeclaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do Curso
Among all of the business domains, HR is still the least disrupted. However, the latest developments in data collection and analysis tools and technologies allow for data driven decision-making in all dimensions, including HR. This course will provide a solid basis for dealing with employee data and developing a predictive model to analyze employee turnover.
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.- 1
Introduction to HR Analytics
GratuitoIn this chapter you will learn about the problems addressed by HR analytics, as well as will explore a sample HR dataset that will further be analyzed. You will describe and visualize some of the key variables, transform and manipulate the dataset to make it ready for analytics.
- 2
Predicting employee turnover
This chapter introduces one of the most popular classification techniques: the Decision Tree. You will use it to develop an algorithm that predicts employee turnover.
Splitting the data50 xpSeparating Target and Features100 xpSpliting employee data100 xpIntroduction to Decision Tree classification50 xpComputing Gini index100 xpSplitting the tree100 xpPredicting employee churn using decision trees50 xpFitting the tree to employee data100 xpChecking the accuracy of prediction100 xpInterpretation of the decision tree50 xpExporting the tree100 xpInterpretation of results50 xp - 3
Evaluating the turnover prediction model
Here, you will learn how to evaluate a model and understand how "good" it is. You will compare different trees to choose the best among them.
Tuning employee turnover classifier50 xpPruning the tree100 xpLimiting the sample size100 xpEvaluating the model50 xpInterpreting accuracy metrics50 xpCalculating accuracy metrics: precision100 xpCalculating accuracy metrics: recall100 xpTargeting both leavers and stayers50 xpCalculating the ROC/AUC score100 xpClass imbalance50 xpBalancing classes100 xpComparison of Employee attrition models100 xp - 4
Choosing the best turnover prediction model
In this final chapter, you will learn how to use cross-validation to avoid overfitting the training data. You will also learn how to know which features are impactful, and which are negligible. Finally, you will use these newly acquired skills to build a better performing Decision Tree!
Hyperparameter tuning50 xpCross-validation using sklearn100 xpSetting up GridSearch parameters100 xpImplementing GridSearch100 xpImportant features for predicting attrition50 xpInterpreting importance50 xpSorting important features100 xpSelecting important features100 xpDevelop and test the best model100 xpFinal thoughts50 xp
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.Hrant Davtyan
Ver MaisAssistant Professor of Data Science at the American University of Armenia
O que os outros alunos têm a dizer?
Junte-se a mais de 15 milhões de alunos e comece HR Analytics: Predicting Employee Churn in Python hoje mesmo!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.