Python for R Users
This course is for R users who want to get up to speed with Python!
Comece O Curso Gratuitamente5 horas15 vídeos57 exercícios14.377 aprendizesDeclaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do Curso
Python and R have seen immense growth in popularity in the "Machine Learning Age". They both are high-level languages that are easy to learn and write. The language you use will depend on your background and field of study and work. R is a language made by and for statisticians, whereas Python is a more general purpose programming language. Regardless of the background, there will be times when a particular algorithm is implemented in one language and not the other, a feature is better documented, or simply, the tutorial you found online uses Python instead of R.
In either case, this would require the R user to work in Python to get his/her work done, or try to understand how something is implemented in Python for it to be translated into R. This course helps you cross the R-Python language barrier.
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.- 1
The Basics
GratuitoLearn about some of the most important data types (integers, floats, strings, and booleans) and data structures (lists, dictionaries, numpy arrays, and pandas DataFrames) in Python and how they compare to the ones in R.
- 2
Control flow, Loops, and Functions
This chapter covers control flow statements (if-else if-else), for loops and shows you how to write your own functions in Python!
- 3
Pandas
In this chapter you will learn more about one of the most important Python libraries, Pandas. In addition to DataFrames, pandas provides several data manipulation functions and methods.
- 4
Plotting
You will learn about the rich ecosystem of visualization libraries in Python. This chapter covers matplotlib, the core visualization library in Python along with the pandas and seaborn libraries.
Plotting directly using pandas50 xpUnivariate plots in pandas100 xpBivariate plots in pandas100 xpSeaborn50 xpUnivariate plots in seaborn100 xpBivariate plots in seaborn100 xpFacet plots in seaborn100 xpMatplotlib50 xpUnivariate and bivariate plots in matplotlib100 xpSubfigures in matplotlib100 xpWorking with axes100 xpPolishing up a figure100 xp - 5
Capstone
As a final capstone, you will apply your Python skills on the NYC Flights 2013 dataset.
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.colaboradores
pré-requisitos
Introduction to Writing Functions in RDaniel Chen
Ver MaisData Science Consultant at Lander Analytics
O que os outros alunos têm a dizer?
Junte-se a mais de 15 milhões de alunos e comece Python for R Users hoje mesmo!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.