Pular para o conteúdo principal
InícioR

Bayesian Modeling with RJAGS

In this course, you'll learn how to implement more advanced Bayesian models using RJAGS.

Comece O Curso Gratuitamente
4 horas15 vídeos58 exercícios7.336 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

The Bayesian approach to statistics and machine learning is logical, flexible, and intuitive. In this course, you will engineer and analyze a family of foundational, generalizable Bayesian models. These range in scope from fundamental one-parameter models to intermediate multivariate & generalized linear regression models. The popularity of such Bayesian models has grown along with the availability of computing resources required for their implementation. You will utilize one of these resources - the rjags package in R. Combining the power of R with the JAGS (Just Another Gibbs Sampler) engine, rjags provides a framework for Bayesian modeling, inference, and prediction.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    Introduction to Bayesian Modeling

    Gratuito

    Bayesian models combine prior insights with insights from observed data to form updated, posterior insights about a parameter. In this chapter, you will review these Bayesian concepts in the context of the foundational Beta-Binomial model for a proportion parameter. You will also learn how to use the rjags package to define, compile, and simulate this model in R.

    Reproduzir Capítulo Agora
    The prior model
    50 xp
    Simulating a Beta prior
    100 xp
    Comparing & contrasting Beta priors
    100 xp
    Which prior?
    50 xp
    Data & the likelihood
    50 xp
    Simulating the dependence of X on p
    100 xp
    Approximating the likelihood function
    100 xp
    Interpreting the likelihood function
    50 xp
    The posterior model
    50 xp
    Define, compile, and simulate
    100 xp
    Updating the posterior
    100 xp
    Influence of the prior & data on the posterior
    50 xp
  2. 2

    Bayesian Models & Markov Chains

    The two-parameter Normal-Normal Bayesian model provides a simple foundation for Normal regression models. In this chapter, you will engineer the Normal-Normal and define, compile, and simulate this model using rjags. You will also explore the magic of the Markov chain mechanics behind rjags simulation.

    Reproduzir Capítulo Agora
  3. 3

    Bayesian Inference & Prediction

    In this chapter, you will extend the Normal-Normal model to a simple Bayesian regression model. Within this context, you will explore how to use rjags simulation output to conduct posterior inference. Specifically, you will construct posterior estimates of regression parameters using posterior means & credible intervals, you will test hypotheses using posterior probabilities, and you will construct posterior predictive distributions for new observations.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

conjuntos de dados

Sleep study data

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Nick Solomon
Collaborator's avatar
Eunkyung Park
Alicia Johnson HeadshotAlicia Johnson

Associate Professor, Macalester College

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Bayesian Modeling with RJAGS hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.