curso
Aprendizado de máquina com PySpark
Avançado
Updated 12/2024Iniciar curso gratuitamente
Incluído gratuitamentePremium or Teams
SparkMachine learning4 horas16 vídeos56 exercícios4,550 XP23,999Declaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do curso
Aprenda a usar o Apache Spark para aprendizado de máquina
O Spark é uma ferramenta avançada e de uso geral para trabalhar com Big Data. O Spark lida de forma transparente com a distribuição de tarefas de computação em um cluster. Isso significa que as operações são rápidas, mas também permite que você se concentre na análise em vez de se preocupar com detalhes técnicos. Neste curso, você aprenderá como colocar os dados no Spark e, em seguida, se aprofundará nos três algoritmos fundamentais do Spark Machine Learning: Regressão linear, regressão logística/classificadores e criação de pipelines.Criar e testar árvores de decisão
Criar suas próprias árvores de decisão é uma ótima maneira de começar a explorar os modelos de aprendizado de máquina. Você usará um algoritmo chamado "Recursive Partitioning" para dividir os dados em duas classes e encontrar um preditor dentro dos dados que resulte na divisão mais informativa das duas classes, e repetirá essa ação com outros nós. Em seguida, você pode usar a árvore de decisão para fazer previsões com novos dados.Domine a regressão logística e linear no PySpark
A regressão logística e linear são técnicas essenciais de aprendizado de máquina que são suportadas pelo PySpark. Você aprenderá a criar e avaliar modelos de regressão logística, antes de passar para a criação de modelos de regressão linear para ajudá-lo a refinar seus preditores para apenas as opções mais relevantes.Ao final do curso, você se sentirá confiante para aplicar seus novos conhecimentos de aprendizado de máquina, graças às tarefas práticas e aos conjuntos de dados práticos encontrados ao longo do curso.
Pré-requisitos
Introduction to PySparkSupervised Learning with scikit-learn1
Introdução
2
Classificação
3
Regressão
4
Conjuntos e pipelines
Aprendizado de máquina com PySpark
Curso Completo
Declaração de Realização Earn
Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedInCompartilhe nas redes sociais e em sua avaliação de desempenho
Incluído comPremium or Teams
Inscreva-se agoraJunte-se a mais 15 milhões de alunos e comece Aprendizado de máquina com PySpark Hoje!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.