curso
CI/CD for Machine Learning
Avançado
Updated 12/2024Iniciar curso gratuitamente
Incluído gratuitamentePremium or Teams
ShellMachine learning5 horas15 vídeos46 exercícios3,500 XP3,771Declaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do curso
Fundamentals of CI/CD, YAML, and Machine Learning
You'll be introduced to the fundamental concepts of CI/CD and YAML, and gain an understanding of the software development life cycle and key terms like build, test, and deploy. You'll define Continuous Integration, Continuous Delivery, and Continuous Deployment while examining their distinctions. You'll also explore the utility of CI/CD in machine learning and experimentation.GitHub Actions for CI/CD Automation
You'll learn about GA, a powerful platform for implementing CI/CD workflows. You'll discover the various elements of GA, including events, actions, jobs, steps, runners, and context. You'll learn how to define workflows triggered by events such as push and pull requests and customize runner machines. You'll also gain practical experience by setting up basic CI pipelines and understanding the GA log.Versioning Datasets with Data Version Control
You'll delve deep into Data Version Control (DVC) for versioning datasets, initializing DVC, and tracking datasets. Using DVC pipelines, you'll learn how to train classification models and generate metrics in a reproducible manner.Optimizing Model Performance and Hyperparameter Tuning
You'll now focus on model performance analysis and hyperparameter tuning and gain practical skills in diffing metrics and plots across branches to compare changes in model performance. You'll learn how to download artifacts using GA and perform hyperparameter tuning using scikit-learn's GridSearchCV. Additionally, you'll explore automating pull requests with the best model configuration.Pré-requisitos
MLOps ConceptsSupervised Learning with scikit-learnFoundations of Git1
Introduction to Continuous Integration/Continuous Delivery and YAML
2
GitHub Actions
3
Continuous Integration in Machine Learning
4
Comparing training runs and Hyperparameter (HP) tuning
CI/CD for Machine Learning
Curso Completo
Declaração de Realização Earn
Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedInCompartilhe nas redes sociais e em sua avaliação de desempenho
Incluído comPremium or Teams
Inscreva-se agoraJunte-se a mais 15 milhões de alunos e comece CI/CD for Machine Learning Hoje!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.