Pular para o conteúdo principal
InícioShell

curso

CI/CD for Machine Learning

Avançado
Updated 12/2024
Elevate your Machine Learning Development with CI/CD using GitHub Actions and Data Version Control
Iniciar curso gratuitamente

Incluído gratuitamentePremium or Teams

ShellMachine learning5 horas15 vídeos46 exercícios3,500 XP3,771Declaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

The course will empower you to streamline your machine learning development processes, enhancing efficiency, reliability, and reproducibility in your projects. Throughout the course, you'll develop a comprehensive understanding of CI/CD workflows and YAML syntax, utilizing GitHub Actions (GA) for automation, training models in a pipeline, versioning datasets with DVC, performing hyperparameter tuning, and automating testing and pull requests.

Fundamentals of CI/CD, YAML, and Machine Learning

You'll be introduced to the fundamental concepts of CI/CD and YAML, and gain an understanding of the software development life cycle and key terms like build, test, and deploy. You'll define Continuous Integration, Continuous Delivery, and Continuous Deployment while examining their distinctions. You'll also explore the utility of CI/CD in machine learning and experimentation.

GitHub Actions for CI/CD Automation

You'll learn about GA, a powerful platform for implementing CI/CD workflows. You'll discover the various elements of GA, including events, actions, jobs, steps, runners, and context. You'll learn how to define workflows triggered by events such as push and pull requests and customize runner machines. You'll also gain practical experience by setting up basic CI pipelines and understanding the GA log.

Versioning Datasets with Data Version Control

You'll delve deep into Data Version Control (DVC) for versioning datasets, initializing DVC, and tracking datasets. Using DVC pipelines, you'll learn how to train classification models and generate metrics in a reproducible manner.

Optimizing Model Performance and Hyperparameter Tuning

You'll now focus on model performance analysis and hyperparameter tuning and gain practical skills in diffing metrics and plots across branches to compare changes in model performance. You'll learn how to download artifacts using GA and perform hyperparameter tuning using scikit-learn's GridSearchCV. Additionally, you'll explore automating pull requests with the best model configuration.

Pré-requisitos

MLOps ConceptsSupervised Learning with scikit-learnFoundations of Git
1

Introduction to Continuous Integration/Continuous Delivery and YAML

Iniciar capítulo
2

GitHub Actions

Iniciar capítulo
3

Continuous Integration in Machine Learning

Iniciar capítulo
4

Comparing training runs and Hyperparameter (HP) tuning

Iniciar capítulo
CI/CD for Machine Learning
Curso
Completo

Declaração de Realização Earn

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 15 milhões de alunos e comece CI/CD for Machine Learning Hoje!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.