Pular para o conteúdo principal
InícioPython

Data Privacy and Anonymization in Python

Learn to process sensitive information with privacy-preserving techniques.

Comece O Curso Gratuitamente
4 horas16 vídeos49 exercícios2.967 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Data privacy has never been more important. But how do you balance privacy with the need to gather and share valuable business insights? In this course, you'll learn how to do just that, using the same methods as Google and Amazon—including data generalization and privacy models, like k-Anonymity and differential privacy. In addition to touching on topics such as GDPR, you'll also discover how to build and train machine learning models in Python while protecting users’ sensitive information such as employee and income data. Let’s get started!
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    Introduction to Data Privacy

    Gratuito

    Get ready to apply anonymization techniques such as data suppression, masking, synthetic data generation, and generalization. In this chapter, you’ll learn how to distinguish between sensitive and non-sensitive personally identifiable information (PII), quasi-identifiers, and the basics of the GDPR. You'll also encounter real-life examples of what can go wrong if you don't follow these best practices.

    Reproduzir Capítulo Agora
    What's private, and why do we care?
    50 xp
    Privacy is power
    50 xp
    Is it sensitive or non-sensitive?
    100 xp
    Suppression of sensitive attributes
    100 xp
    Data masking and data generation with Faker
    50 xp
    Masking sensitive PII
    100 xp
    Removing names with faker
    100 xp
    Anonymizing with data generalization
    50 xp
    Reducing identification risk with generalization
    100 xp
    Data aggregation and data generalization
    50 xp
    Top and bottom coding White House salaries
    100 xp
  2. 2

    More on Privacy-Preserving Techniques

    Discover how to anonymize data by sampling from datasets following the probability distribution of the columns. You’ll then learn how to apply the k-anonymity privacy model to prevent linkage or re-identification attacks and use hierarchies to perform data generalization in categorical variables.

    Reproduzir Capítulo Agora
  3. 3

    Differential Privacy

    Learn about differential privacy, the model used by major technology companies such as Apple, Google, and Uber. In this chapter, you’ll explore data by generating private histograms and computing private averages in data. You’ll also create differentially private machine learning models that allow businesses to increase the utility of their data.

    Reproduzir Capítulo Agora
  4. 4

    Anonymizing and Releasing Datasets

    In this final chapter, you’ll learn how to apply dimensionality reduction methods such as principal component analysis (PCA) to anonymize large multi-column datasets. You’ll then use Faker to generate realistic and consistent datasets, and scikit-learn to create synthetic datasets that follow a normal distribution. Lastly, you’ll tie everything you learned in this course together as you combine multiple techniques to safely release datasets to the public.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

conjuntos de dados

IBM HR Analytics Employee Attrition & PerformanceUS Adult IncomeMall Customers2017-2018 NBA Salaries

colaboradores

Collaborator's avatar
Richie Cotton
Collaborator's avatar
Justin Saddlemyer
Rebeca Gonzalez HeadshotRebeca Gonzalez

Data Scientist, Hiberus Tecnologia

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Data Privacy and Anonymization in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.