Pular para o conteúdo principal
InícioPython

curso

Dimensionality Reduction in Python

Intermediário
Updated 12/2024
Understand the concept of reducing dimensionality in your data, and master the techniques to do so in Python.
Iniciar curso gratuitamente

Incluído gratuitamentePremium or Teams

PythonMachine learning4 horas16 vídeos58 exercícios4,700 XP30,871Declaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

High-dimensional datasets can be overwhelming and leave you not knowing where to start. Typically, you’d visually explore a new dataset first, but when you have too many dimensions the classical approaches will seem insufficient. Fortunately, there are visualization techniques designed specifically for high dimensional data and you’ll be introduced to these in this course. After exploring the data, you’ll often find that many features hold little information because they don’t show any variance or because they are duplicates of other features. You’ll learn how to detect these features and drop them from the dataset so that you can focus on the informative ones. In a next step, you might want to build a model on these features, and it may turn out that some don’t have any effect on the thing you’re trying to predict. You’ll learn how to detect and drop these irrelevant features too, in order to reduce dimensionality and thus complexity. Finally, you’ll learn how feature extraction techniques can reduce dimensionality for you through the calculation of uncorrelated principal components.

Pré-requisitos

Supervised Learning with scikit-learn
1

Exploring High Dimensional Data

Iniciar capítulo
2

Feature Selection I - Selecting for Feature Information

Iniciar capítulo
3

Feature Selection II - Selecting for Model Accuracy

Iniciar capítulo
4

Feature Extraction

Iniciar capítulo
Dimensionality Reduction in Python
Curso
Completo

Declaração de Realização Earn

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 15 milhões de alunos e comece Dimensionality Reduction in Python Hoje!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.