Pular para o conteúdo principal
InícioR

Foundations of Inference in R

Learn how to draw conclusions about a population from a sample of data via a process known as statistical inference.

Comece O Curso Gratuitamente
4 horas17 vídeos58 exercícios35.252 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

One of the foundational aspects of statistical analysis is inference, or the process of drawing conclusions about a larger population from a sample of data. Although counter intuitive, the standard practice is to attempt to disprove a research claim that is not of interest. For example, to show that one medical treatment is better than another, we can assume that the two treatments lead to equal survival rates only to then be disproved by the data. Additionally, we introduce the idea of a p-value, or the degree of disagreement between the data and the hypothesis. We also dive into confidence intervals, which measure the magnitude of the effect of interest (e.g. how much better one treatment is than another).
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Inferência estatística in R

Ir para a trilha

Estatístico in R

Ir para a trilha
  1. 1

    Introduction to ideas of inference

    Gratuito

    In this chapter, you will investigate how repeated samples taken from a population can vary. It is the variability in samples that allow you to make claims about the population of interest. It is important to remember that the research claims of interest focus on the population while the information available comes only from the sample data.

    Reproduzir Capítulo Agora
    Welcome to the course!
    50 xp
    Hypotheses (1)
    50 xp
    Hypotheses (2)
    50 xp
    Randomized distributions
    50 xp
    Working with the NHANES data
    100 xp
    Calculating statistic of interest
    100 xp
    Randomized data under null model of independence
    100 xp
    Randomized statistics and dotplot
    100 xp
    Randomization density
    100 xp
    Using the randomization distribution
    50 xp
    Do the data come from the population?
    100 xp
    What can you conclude?
    50 xp
    Study conclusions
    50 xp
  2. 3

    Hypothesis testing errors: opportunity cost

    You will continue learning about hypothesis testing with a new example and the same structure of randomization tests. In this chapter, however, the focus will be on different errors (type I and type II), how they are made, when one is worse than another, and how things like sample size and effect size impact the error rates.

    Reproduzir Capítulo Agora
  3. 4

    Confidence intervals

    As a complement to hypothesis testing, confidence intervals allow you to estimate a population parameter. Recall that your interest is always in some characteristic of the population, but you only have incomplete information to estimate the parameter using sample data. Here, the parameter is the true proportion of successes in a population. Bootstrapping is used to estimate the variability needed to form the confidence interval.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

Nas seguintes faixas

Inferência estatística in R

Ir para a trilha

Estatístico in R

Ir para a trilha

conjuntos de dados

All pollsPolling dataBig discrimination datasetNew discrimination datasetSmall discrimination dataset

colaboradores

Collaborator's avatar
Nick Carchedi
Collaborator's avatar
Tom Jeon
Jo Hardin HeadshotJo Hardin

Professor at Pomona College

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Foundations of Inference in R hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.