Foundations of Inference in R
Learn how to draw conclusions about a population from a sample of data via a process known as statistical inference.
Comece O Curso Gratuitamente4 horas17 vídeos58 exercícios35.358 aprendizesDeclaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do Curso
One of the foundational aspects of statistical analysis is inference, or the process of drawing conclusions about a larger population from a sample of data. Although counter intuitive, the standard practice is to attempt to disprove a research claim that is not of interest. For example, to show that one medical treatment is better than another, we can assume that the two treatments lead to equal survival rates only to then be disproved by the data. Additionally, we introduce the idea of a p-value, or the degree of disagreement between the data and the hypothesis. We also dive into confidence intervals, which measure the magnitude of the effect of interest (e.g. how much better one treatment is than another).
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.Nas seguintes faixas
Inferência estatística in R
Ir para a trilhaEstatístico in R
Ir para a trilha- 1
Introduction to ideas of inference
GratuitoIn this chapter, you will investigate how repeated samples taken from a population can vary. It is the variability in samples that allow you to make claims about the population of interest. It is important to remember that the research claims of interest focus on the population while the information available comes only from the sample data.
Welcome to the course!50 xpHypotheses (1)50 xpHypotheses (2)50 xpRandomized distributions50 xpWorking with the NHANES data100 xpCalculating statistic of interest100 xpRandomized data under null model of independence100 xpRandomized statistics and dotplot100 xpRandomization density100 xpUsing the randomization distribution50 xpDo the data come from the population?100 xpWhat can you conclude?50 xpStudy conclusions50 xp - 2
Completing a randomization test: gender discrimination
In this chapter, you will gain the tools and knowledge to complete a full hypothesis test. That is, given a dataset, you will know whether or not is appropriate to reject the null hypothesis in favor of the research claim of interest.
Example: gender discrimination50 xpGender discrimination hypotheses50 xpSummarizing gender discrimination100 xpStep-by-step through the permutation100 xpRandomizing gender discrimination100 xpDistribution of statistics50 xpReflecting on analysis50 xpCritical region100 xpTwo-sided critical region100 xpWhy 0.05?50 xpHow does sample size affect results?50 xpSample size in randomization distribution100 xpSample size for critical region100 xpWhat is a p-value?50 xpCalculating the p-values100 xpPractice calculating p-values100 xpCalculating two-sided p-values100 xpSummary of gender discrimination50 xp - 3
Hypothesis testing errors: opportunity cost
You will continue learning about hypothesis testing with a new example and the same structure of randomization tests. In this chapter, however, the focus will be on different errors (type I and type II), how they are made, when one is worse than another, and how things like sample size and effect size impact the error rates.
Example: opportunity cost50 xpSummarizing opportunity cost (1)100 xpPlotting opportunity cost100 xpRandomizing opportunity cost100 xpSummarizing opportunity cost (2)100 xpOpportunity cost conclusion50 xpErrors and their consequences50 xpDifferent choice of error rate50 xpErrors for two-sided hypotheses50 xpp-value for two-sided hypotheses: opportunity costs100 xpSummary of opportunity costs50 xp - 4
Confidence intervals
As a complement to hypothesis testing, confidence intervals allow you to estimate a population parameter. Recall that your interest is always in some characteristic of the population, but you only have incomplete information to estimate the parameter using sample data. Here, the parameter is the true proportion of successes in a population. Bootstrapping is used to estimate the variability needed to form the confidence interval.
Parameters and confidence intervals50 xpWhat is the parameter?50 xpHypothesis test or confidence interval?50 xpBootstrapping50 xpResampling from a sample100 xpVisualizing the variability of p-hat100 xpAlways resample the original number of observations50 xpVariability in p-hat50 xpEmpirical Rule100 xpBootstrap t-confidence interval100 xpBootstrap percentile interval100 xpInterpreting CIs and technical conditions50 xpSample size effects on bootstrap CIs100 xpSample proportion value effects on bootstrap CIs100 xpPercentile effects on bootstrap CIs100 xpSummary of statistical inference50 xp
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.Nas seguintes faixas
Inferência estatística in R
Ir para a trilhaEstatístico in R
Ir para a trilhaconjuntos de dados
All pollsPolling dataBig discrimination datasetNew discrimination datasetSmall discrimination datasetcolaboradores
O que os outros alunos têm a dizer?
Junte-se a mais de 15 milhões de alunos e comece Foundations of Inference in R hoje mesmo!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.