Pular para o conteúdo principal
InícioR

Handling Missing Data with Imputations in R

Diagnose, visualize and treat missing data with a range of imputation techniques with tips to improve your results.

Comece O Curso Gratuitamente
4 horas13 vídeos49 exercícios5.160 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Missing data is everywhere. The process of filling in missing values is known as imputation, and knowing how to correctly fill in missing data is an essential skill if you want to produce accurate predictions and distinguish yourself from the crowd. In this course, you’ll learn how to use visualizations and statistical tests to recognize missing data patterns and how to impute data using a collection of statistical and machine learning models. You’ll also gain decision-making skills, helping you decide which imputation method fits best in a particular situation. Finally, you’ll learn to incorporate uncertainty from imputation into your inference and predictions, making them more robust and reliable.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    The Problem of Missing Data

    Gratuito

    In this chapter, you’ll find out why missing data can be a risk when analyzing a dataset. You’ll be introduced to the three missing data mechanisms and learn how to recognize them using statistical tests and visualization tools.

    Reproduzir Capítulo Agora
    Missing data: what can go wrong
    50 xp
    Linear regression with incomplete data
    100 xp
    Analyzing regression output
    50 xp
    Comparing models
    100 xp
    Missing data mechanisms
    50 xp
    Recognizing missing data mechanisms
    100 xp
    t-test for MAR: data preparation
    100 xp
    t-test for MAR: interpretation
    100 xp
    Visualizing missing data patterns
    50 xp
    Aggregation plot
    100 xp
    Spine plot
    100 xp
    Mosaic plot
    100 xp
  2. 2

    Donor-Based Imputation

    Get to know the taxonomy of imputation methods and learn three donor-based techniques: mean, hot-deck, and k-Nearest-Neighbors imputation. You’ll look under the hood to see how these methods work, before learning how to apply them to a real-world tropical weather dataset. Along the way, you’ll also learn useful tricks that you can use to make them work even better for your problems.

    Reproduzir Capítulo Agora
  3. 3

    Model-Based Imputation

    It’s time to learn how to use statistical and machine learning models, such as linear regression, logistic regression, and random forests, to impute missing data. In this chapter, you’ll look into how the models make their predictions and use this knowledge to draw the imputed values from conditional distributions. This is important as it ensures your imputations are more varied and plausible, making them more similar to the true data.

    Reproduzir Capítulo Agora
  4. 4

    Uncertainty from Imputation

    Imputed values are not set in stone. They are just estimates and estimates come with some uncertainty. In this final chapter, you’ll discover how bootstrapping and chained equation using the mice package can be used to incorporate imputation uncertainty into your models and analyses to make them more reliable and robust.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

conjuntos de dados

Biopics datasetTropical Atmosphere Ocean dataset

colaboradores

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Adel Nehme
Michał Oleszak HeadshotMichał Oleszak

Machine Learning Engineer

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Handling Missing Data with Imputations in R hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.