Pular para o conteúdo principal
InícioR

Hierarchical and Mixed Effects Models in R

In this course you will learn to fit hierarchical models with random effects.

Comece O Curso Gratuitamente
4 horas13 vídeos55 exercícios20.212 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

This course begins by reviewing slopes and intercepts in linear regressions before moving on to random-effects. You'll learn what a random effect is and how to use one to model your data. Next, the course covers linear mixed-effect regressions. These powerful models will allow you to explore data with a more complicated structure than a standard linear regression. The course then teaches generalized linear mixed-effect regressions. Generalized linear mixed-effects models allow you to model more kinds of data, including binary responses and count data. Lastly, the course goes over repeated-measures analysis as a special case of mixed-effect modeling. This kind of data appears when subjects are followed over time and measurements are collected at intervals. Throughout the course you'll work with real data to answer interesting questions using mixed-effects models.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Estatístico in R

Ir para a trilha
  1. 1

    Overview and Introduction to Hierarchical and Mixed Models

    Gratuito

    The first chapter provides an example of when to use a mixed-effect and also describes the parts of a regression. The chapter also examines a student test-score dataset with a nested structure to demonstrate mixed-effects.

    Reproduzir Capítulo Agora
    What is a hierarchical model?
    50 xp
    Examples of hierarchical datasets
    100 xp
    Multi-level student data
    100 xp
    Exploring multiple-levels: Classrooms and schools
    100 xp
    Parts of a regression
    50 xp
    Intercepts
    100 xp
    Slopes and multiple regression
    100 xp
    Random-effects in regressions with school data
    50 xp
    Random-effect intercepts
    100 xp
    Random-effect slopes
    100 xp
    Building the school model
    100 xp
    Interpreting the school model
    100 xp
  2. 3

    Generalized Linear Mixed Effect Models

    This chapter extends linear mixed-effects models to include non-normal error terms using generalized linear mixed-effects models. By altering the model to include a non-normal error term, you are able to model more kinds of data with non-linear responses. After reviewing generalized linear models, the chapter examines binomial data and count data in the context of mixed-effects models.

    Reproduzir Capítulo Agora
  3. 4

    Repeated Measures

    This chapter shows how repeated-measures analysis is a special case of mixed-effect modeling. The chapter begins by reviewing paired t-tests and repeated measures ANOVA. Next, the chapter uses a linear mixed-effect model to examine sleep study data. Lastly, the chapter uses a generalized linear mixed-effect model to examine hate crime data from New York state through time.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

Nas seguintes faixas

Estatístico in R

Ir para a trilha

conjuntos de dados

Illinois chlamydia dataMaryland crime dataClassroom dataBirth rate dataNew York hate crime data

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Nick Solomon
Richard Erickson HeadshotRichard Erickson

Data Scientist

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Hierarchical and Mixed Effects Models in R hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.