Pular para o conteúdo principal
InícioPython

Intermediate Network Analysis in Python

Analyze time series graphs, use bipartite graphs, and gain the skills to tackle advanced problems in network analytics.

Comece O Curso Gratuitamente
4 horas13 vídeos46 exercícios13.133 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Have you taken DataCamp's Introduction to Network Analysis in Python course and are yearning to learn more sophisticated techniques to analyze your networks, whether they be social, transportation, or biological? Then this is the course for you! Herein, you'll build on your knowledge and skills to tackle more advanced problems in network analytics! You'll gain the conceptual and practical skills to analyze evolving time series of networks, learn about bipartite graphs, and how to use bipartite graphs in product recommendation systems. You'll also learn about graph projections, why they're so useful in Data Science, and figure out the best ways to store and load graph data from files. You'll consolidate all of this knowledge in a final chapter case study, in which you'll analyze a forum dataset and come out of this course a Pythonista Network Analyst ninja!
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    Bipartite graphs & product recommendation systems

    Gratuito

    In this chapter, you will learn about bipartite graphs and how they are used in recommendation systems. You will explore the GitHub dataset from the previous course, this time analyzing the underlying bipartite graph that was used to create the graph that you used earlier. Finally, you will get a chance to build the basic components of a recommendation system using the GitHub data!

    Reproduzir Capítulo Agora
    Definitions & basic recap
    50 xp
    Exploratory data analysis
    50 xp
    Plotting using nxviz
    100 xp
    Bipartite graphs
    50 xp
    The bipartite keyword
    100 xp
    Degree centrality distribution of user nodes
    100 xp
    Degree centrality distribution of project nodes
    100 xp
    Bipartite graphs and recommendation systems
    50 xp
    Shared nodes in other partition
    100 xp
    User similarity metric
    100 xp
    Find similar users
    100 xp
    Recommend repositories
    100 xp
  2. 2

    Graph projections

    In this chapter, you will use a famous American Revolution dataset to dive deeper into exploration of bipartite graphs. Here, you will learn how to create the unipartite projection of a bipartite graph, a very useful method for simplifying a complex network for further analysis. Additionally, you will learn how to use matrices to manipulate and analyze graphs - with many computing routines optimized for matrices, you'll be able to analyze many large graphs quickly and efficiently!

    Reproduzir Capítulo Agora
  3. 3

    Comparing graphs & time-dynamic graphs

    In this chapter, you will delve into the fundamental ways that you can analyze graphs that change over time. You will explore a dataset describing messaging frequency between students, and learn how to visualize important evolving graph statistics.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

conjuntos de dados

American RevolutionGitHubCollege forum messages

colaboradores

Collaborator's avatar
Hugo Bowne-Anderson
Collaborator's avatar
Yashas Roy
Eric Ma HeadshotEric Ma

Data Carpentry instructor and author of nxviz package

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Intermediate Network Analysis in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.