Pular para o conteúdo principal
InícioR

Mixture Models in R

Learn mixture models: a convenient and formal statistical framework for probabilistic clustering and classification.

Comece O Curso Gratuitamente
4 horas14 vídeos47 exercícios4.898 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Mixture modeling is a way of representing populations when we are interested in their heterogeneity. Mixture models use familiar probability distributions (e.g. Gaussian, Poisson, Binomial) to provide a convenient yet formal statistical framework for clustering and classification. Unlike standard clustering approaches, we can estimate the probability of belonging to a cluster and make inference about the sub-populations. For example, in the context of marketing, you may want to cluster different customer groups and find their respective probabilities of purchasing specific products to better target them with custom promotions. When applying natural language processing to a large set of documents, you may want to cluster documents into different topics and understand how important each topic is across each document. In this course, you will learn what Mixture Models are, how they are estimated, and when it is appropriate to apply them!
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    Introduction to Mixture Models

    Gratuito

    In this chapter, you will be introduced to fundamental concepts in model-based clustering and how this approach differs from other clustering techniques. You will learn the generating process of Gaussian Mixture Models as well as how to visualize the clusters.

    Reproduzir Capítulo Agora
    Introduction to model-based clustering
    50 xp
    Clustering approaches
    50 xp
    Explore gender data
    100 xp
    Gaussian distribution
    50 xp
    Sampling a Gaussian distribution
    100 xp
    (not so good) Estimations of the mean and sd
    100 xp
    Gaussian mixture models (GMM)
    50 xp
    Simulate a mixture of two Gaussian distributions
    100 xp
    Plot histogram of Gaussian Mixture
    100 xp
    Mixture of three Gaussian distributions
    100 xp
  2. 2

    Structure of Mixture Models and Parameters Estimation

    In this chapter, you will be introduced to the main structure of Mixture Models, how to address different data with this approach and how to estimate the parameters involved. To accomplish the estimation, you will learn an iterative method called Expectation-Maximization algorithm.

    Reproduzir Capítulo Agora
  3. 4

    Mixture Models Beyond Gaussians

    In this module, you will learn how Mixture Models extends to consider probability distributions different from the Gaussian and how these models are fitted with `flexmix`. The datasets used are handwritten digits images and the number of crimes in Chicago city. For the first dataset you will find clusters that summarize the handwritten digits and for the second dataset, you will find clusters of communities where is more or less dangerous to live in.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

conjuntos de dados

Chicago Crimes datasetDigits datasetGender dataset

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
David Campos
Collaborator's avatar
Benjamin Feder
Collaborator's avatar
Shon Inouye
Collaborator's avatar
Victor Medina
Victor  Medina HeadshotVictor Medina

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Mixture Models in R hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.