Pular para o conteúdo principal
InícioPython

Model Validation in Python

Learn the basics of model validation, validation techniques, and begin creating validated and high performing models.

Comece O Curso Gratuitamente
4 horas15 vídeos47 exercícios24.536 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Machine learning models are easier to implement now more than ever before. Without proper validation, the results of running new data through a model might not be as accurate as expected. Model validation allows analysts to confidently answer the question, how good is your model? We will answer this question for classification models using the complete set of tic-tac-toe endgame scenarios, and for regression models using fivethirtyeight’s ultimate Halloween candy power ranking dataset. In this course, we will cover the basics of model validation, discuss various validation techniques, and begin to develop tools for creating validated and high performing models.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Cientista de aprendizado de máquina em Python

Ir para a trilha
  1. 1

    Basic Modeling in scikit-learn

    Gratuito

    Before we can validate models, we need an understanding of how to create and work with them. This chapter provides an introduction to running regression and classification models in scikit-learn. We will use this model building foundation throughout the remaining chapters.

    Reproduzir Capítulo Agora
    Introduction to model validation
    50 xp
    Modeling steps
    50 xp
    Seen vs. unseen data
    100 xp
    Regression models
    50 xp
    Set parameters and fit a model
    100 xp
    Feature importances
    100 xp
    Classification models
    50 xp
    Classification predictions
    100 xp
    Reusing model parameters
    100 xp
    Random forest classifier
    100 xp
  2. 2

    Validation Basics

    This chapter focuses on the basics of model validation. From splitting data into training, validation, and testing datasets, to creating an understanding of the bias-variance tradeoff, we build the foundation for the techniques of K-Fold and Leave-One-Out validation practiced in chapter three.

    Reproduzir Capítulo Agora
  3. 3

    Cross Validation

    Holdout sets are a great start to model validation. However, using a single train and test set if often not enough. Cross-validation is considered the gold standard when it comes to validating model performance and is almost always used when tuning model hyper-parameters. This chapter focuses on performing cross-validation to validate model performance.

    Reproduzir Capítulo Agora
  4. 4

    Selecting the best model with Hyperparameter tuning.

    The first three chapters focused on model validation techniques. In chapter 4 we apply these techniques, specifically cross-validation, while learning about hyperparameter tuning. After all, model validation makes tuning possible and helps us select the overall best model.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

Nas seguintes faixas

Cientista de aprendizado de máquina em Python

Ir para a trilha

conjuntos de dados

Candy datasetTic-Tac-Toe dataset

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins
Kasey Jones HeadshotKasey Jones

Research Data Scientist

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Model Validation in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.