Pular para o conteúdo principal
InícioPython

Performing Experiments in Python

Learn about experimental design, and how to explore your data to ask and answer meaningful questions.

Comece O Curso Gratuitamente
4 horas16 vídeos53 exercícios7.717 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Data is all around us and can help us to understand many things. Making a pretty graph is great, but how can we tell the difference between a few outliers on a graph and a real, reliable effect? Is a trend that we see on a graph a reliable result or just random chance playing tricks? In this course, you will learn how to interrogate datasets in a rigorous way, giving clear answers to your questions. You will learn a range of statistical tests, how to apply them, how to understand their results, and how to deal with their shortcomings. Along the way, you will explore Olympic athlete data and the differences between populations of continents.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    The Basics of Statistical Hypothesis Testing

    Gratuito

    In this chapter, you will learn how to explore your data and ask meaningful questions. Then, you will discover how to answer these question by using your first statistical hypothesis tests: the t-test, the Chi-Square test, the Fisher exact test, and the Pearson correlation test.

    Reproduzir Capítulo Agora
    Welcome to the course!
    50 xp
    Getting started with plotnine
    100 xp
    Boxplots
    100 xp
    Density plots
    100 xp
    Student's t-test
    50 xp
    Your first t-test
    100 xp
    One-sample t-test
    100 xp
    Two-sample t-test
    100 xp
    Testing proportion and correlation
    50 xp
    Chi-square test
    100 xp
    Fisher's exact test
    100 xp
    Pearson correlation
    100 xp
  2. 2

    Design Considerations in Experimental Design

    In this chapter, you will learn how to examine and multiple factors at once, controlling for the effect of confounding variables and examining interactions between variables. You will learn how to use randomization and blocking to build robust tests and how to use the powerful ANOVA method.

    Reproduzir Capítulo Agora
  3. 3

    Sample size, Power analysis, and Effect size

    In this chapter, you will focus on ways to avoid drawing false conclusions, whether false positives (type I errors) or false negatives (type II errors). Central to avoiding false negatives is understanding the interplay between sample size, power analysis, and effect size.

    Reproduzir Capítulo Agora
  4. 4

    Testing Normality: Parametric and Non-parametric Tests

    In this final chapter, you will examine the assumptions underlying statistical tests and learn about how that influences your experimental design. This will include learning whether a variable follows a normal distribution and when you should use non-parametric statistical tests like the Wilcoxon rank-sum test and the Spearman correlation test.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

conjuntos de dados

Olympic datasetUN dataset

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Amy Peterson
Luke Hayden HeadshotLuke Hayden

Lead Data Scientist at Kobalt Music Group

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Performing Experiments in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.