Predictive Analytics using Networked Data in R
Learn to predict labels of nodes in networks using network learning and by extracting descriptive features from the network
Comece O Curso Gratuitamente4 horas14 vídeos56 exercícios4.466 aprendizesDeclaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do Curso
In this course, you will learn to perform state-of-the art predictive analytics using networked data in R. The aim of network analytics is to predict to which class a network node belongs, such as churner or not, fraudster or not, defaulter or not, etc. To accomplish this, we discuss how to leverage information from the network and its underlying structure in a predictive way. More specifically, we introduce the idea of featurization such that network features can be added to non-network features as such boosting the performance of any resulting analytical model. In this course, you will use the igraph package to generate and label a network of customers in a churn setting and learn about the foundations of network learning. Then, you will learn about homophily, dyadicity and heterophilicty, and how these can be used to get key exploratory insights in your network. Next, you will use the functionality of the igraph package to compute various network features to calculate both node-centric as well as neighbor based network features. Furthermore, you will use the Google PageRank algorithm to compute network features and empirically validate their predictive power. Finally, we teach you how to generate a flat dataset from the network and analyze it using logistic regression and random forests.
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.Nas seguintes faixas
Análise de rede in R
Ir para a trilha- 1
Introduction, networks and labelled networks
GratuitoIn this chapter you will be introduced to labelled networks, network learning and the challanges that can arise.
Motivation: social networks and predictive analytics50 xpMost likely to churn50 xpCreate a network from an edgelist100 xpLabeled networks and network learning50 xpLabeling nodes100 xpColoring nodes100 xpVisualizing Churners100 xpRelational Neighbor Classifier100 xpChallenges of network-based inference50 xpChallenges in Network learning50 xpProbabilistic Relational Neighbor Classifier100 xpCollective Inferencing100 xp - 2
Homophily
In this chapter you will learn about homophily and how to compute the two measures that can be used to characterice it, dyadicity and heterophilicty.
Homophily50 xpHomophilic networks50 xpExtracting types of edges100 xpCounting types of edges100 xpCounting nodes and computing connectance100 xpDyadicity50 xpSame label edges50 xpDyadicity of churners100 xpDyadicity of non-churners50 xpHeterophilicity50 xpCross label edges50 xpCompute heterophilicity100 xpSummary of homophily50 xpDyadicity, Heterophilicity, & Homophily50 xpIs the network homophilic?50 xp - 3
Network Featurization
In this chapter you will use the igraph package to compute various network features and add them to the network.
Basic Network features50 xpSimple network features100 xpCentrality features100 xpTransitivity100 xpLink-Based Features50 xpAdjacency matrices100 xpLink-based features100 xpSecond order link-based features100 xpNeighborhood link-based features100 xpPageRank50 xpMost influential node50 xpChanges in PageRank100 xpConvergence of PageRank100 xpPersonalized PageRank100 xpExtract PageRank features100 xp - 4
Putting it all together
In this chapter you will use the network from Chapter 3 to create a flat dataset. Using standard data mining techniques, you will build predictive models and measure their performance with AUC and top decile lift.
Extract a dataset50 xpGetting a flat dataset100 xpMissing Values50 xpReplace missing values100 xpCorrelated variables100 xpBuilding a predictive model50 xpSplit into train and test100 xpLogistic regression model100 xpRandom forest model100 xpEvaluating model performance50 xpPredicting churn100 xpMeasure AUC50 xpMeasure top decile lift50 xpSummary and final thoughts50 xp
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.Nas seguintes faixas
Análise de rede in R
Ir para a trilhacolaboradores
Maria Oskarsdottir
Ver MaisPost-doctoral Researcher
Bart Baesens
Ver MaisProfessor in Analytics and Data Science at KU Leuven
O que os outros alunos têm a dizer?
Junte-se a mais de 15 milhões de alunos e comece Predictive Analytics using Networked Data in R hoje mesmo!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.