Programming with dplyr
Learn how to perform advanced dplyr transformations and incorporate dplyr and ggplot2 code in functions.
Comece O Curso Gratuitamente4 horas15 vídeos47 exercícios2.749 aprendizesDeclaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do Curso
The tidyverse includes a tremendous set of packages that make working with data simple and fast. But have you ever tried to put dplyr functions inside functions and been stuck with strange errors or unexpected results? Those errors were likely due to tidy evaluation, which requires a little extra work to handle. In Programming with dplyr, you’ll be equipped with strategies for solving these errors via the rlang package. You’ll also learn other techniques for programming with dplyr using data from the World Bank and International Monetary Fund to analyze worldwide trends throughout. You’ll be a tidyverse function writing ninja by the end of the course!
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.- 1
Hold Your Selected Leaders Accountable
GratuitoIn this chapter, you'll revisit dplyr pipelines and enhance your column selection skills with helper functions and regular expressions.
- 2
Keep Them Dogies Movin’
Here, you'll learn how to move columns around in your data and perform the same transformation across multiple data columns. You'll also choose rows that match any or all column criteria.
Providing relocation assistance50 xpMoving with select() and everything()100 xpRearranging with select() and last_col()100 xpShifting positions with relocate()100 xpThat has crossed the line50 xpMutate across multiple columns100 xpSummarize across multiple variables100 xpCombining count() with across()100 xpAnimal crossing: new rowwise's50 xpacross() vs. c_across()50 xpAggregations with rowwise()100 xpOne for any, one for all100 xp - 3
Set Theory Claus and The North Pole
For this section, you'll revisit dplyr joins. You'll then take this further by using set theory clauses to examine overlaps and differences between datasets.
Join together for fun50 xpJoin with me100 xpFurther investigations100 xpLines that intersect are without parallel50 xpIntersect vs. inner join100 xpSpeeding through the intersection100 xpDeliver the state of the union50 xpSave the union100 xpSign up for your local union, all100 xpA little too excepting50 xpChecking for equal sets100 xpChecking for differences100 xp - 4
Speaking a New rlang-uage
In this final part of the course, you'll use rlang operators to turn arguments into variables and create functions that incorporate dplyr and ggplot2 code.
What is your major mal-function?50 xpUnemployment rates by region100 xpMedian unemployment rates by group100 xpBang-bang!!50 xpMatching rlang operators100 xpBang bang into the room100 xpRlang-ing in your rocking chair50 xpYou are the walrus100 xpAnalyze the region results100 xpA great ggplot twist50 xpPlotting and scheming100 xpThe plot title thickens100 xpCongratulations!50 xp
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.colaboradores
Dr. Chester Ismay
Ver MaisEducator, Data Scientist, and R/Python Consultant
O que os outros alunos têm a dizer?
Junte-se a mais de 15 milhões de alunos e comece Programming with dplyr hoje mesmo!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.