Pular para o conteúdo principal
InícioPython

Streamlined Data Ingestion with pandas

Learn to acquire data from common file formats and systems such as CSV files, spreadsheets, JSON, SQL databases, and APIs.

Comece O Curso Gratuitamente
4 horas16 vídeos53 exercícios52.636 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Before you can analyze data, you first have to acquire it. This course teaches you how to build pipelines to import data kept in common storage formats. You’ll use pandas, a major Python library for analytics, to get data from a variety of sources, from spreadsheets of survey responses, to a database of public service requests, to an API for a popular review site. Along the way, you’ll learn how to fine-tune imports to get only what you need and to address issues like incorrect data types. Finally, you’ll assemble a custom dataset from a mix of sources.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Certificação disponível

Engenheiro de dados em Python

Ir para a trilha
  1. 1

    Importing Data from Flat Files

    Gratuito

    Practice using pandas to get just the data you want from flat files, learn how to wrangle data types and handle errors, and look into some U.S. tax data along the way.

    Reproduzir Capítulo Agora
    Introduction to flat files
    50 xp
    Get data from CSVs
    100 xp
    Get data from other flat files
    100 xp
    Modifying flat file imports
    50 xp
    Import a subset of columns
    100 xp
    Import a file in chunks
    100 xp
    Handling errors and missing data
    50 xp
    Specify data types
    100 xp
    Set custom NA values
    100 xp
    Skip bad data
    100 xp
  2. 4

    Importing JSON Data and Working with APIs

    Learn how to work with JSON data and web APIs by exploring a public dataset and getting cafe recommendations from Yelp. End by learning some techniques to combine datasets once they have been loaded into data frames.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

Nas seguintes faixas

Certificação disponível

Engenheiro de dados em Python

Ir para a trilha

conjuntos de dados

Vermont tax return data by ZIP codeFreeCodeCamp New Developer Survey response subsetNYC weather and 311 housing complaints

colaboradores

Collaborator's avatar
Adrián Soto
Collaborator's avatar
Hillary Green-Lerman
Amany Mahfouz HeadshotAmany Mahfouz

Data scientist via spatial analytics and geography.

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Streamlined Data Ingestion with pandas hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.