Pular para o conteúdo principal
InícioPython

Supply Chain Analytics in Python

Leverage the power of Python and PuLP to optimize supply chains.

Comece O Curso Gratuitamente
4 horas16 vídeos48 exercícios19.383 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Supply Chain Analytics transforms supply chain activities from guessing, to ones that makes decision using data. An essential tool in Supply Chain Analytics is using optimization analysis to assist in decision making. According to Deloitte, 79% of organizations with high performing supply chains achieve revenue growth that is significantly above average. This course will introduce you to PuLP, a Linear Program optimization modeler written in Python. Using PuLP, the course will show you how to formulate and answer Supply Chain optimization questions such as where a production facility should be located, how to allocate production demand across different facilities, and more. We will explore the results of the models and their implications through sensitivity and simulation testing. This course will help you position yourself to improve the decision making of a supply chain by leveraging the power of Python and PuLP.
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.
  1. 1

    Basics of supply chain optimization and PuLP

    Gratuito

    Linear Programming (LP) is a key technique for Supply Chain Optimization. The PuLP framework is an easy to use tool for working with LP problems and allows the programmer to focus on modeling. In this chapter we learn the basics of LP problems and start to learn how to use the PuLP framework to solve them.

    Reproduzir Capítulo Agora
    Basics of optimization
    50 xp
    To LP, or to not IP?
    50 xp
    Choosing exercise routine
    50 xp
    Basics of PuLP modeling
    50 xp
    Getting started with LpProblem()
    50 xp
    Simple resource scheduling exercise
    100 xp
    Using lpSum
    50 xp
    Trying out lpSum
    100 xp
    Logistics planning problem
    100 xp
  2. 3

    Solve and evaluate model

    This chapter reviews some common mistakes made when creating constraints, and step through the process of solving the model. Once we have a solution to our LP model, how do we know if it is correct? In this chapter we also review a process for reasonableness checking or sanity checking the results. Furthermore, we continue working through our case study example on the Capacitated Plant location model by completing all the needed constraints.

    Reproduzir Capítulo Agora
  3. 4

    Sensitivity and simulation testing of model

    In our final chapter we review sensitivity analysis of constraints through shadow prices and slack. Additionally, we look at simulation testing our LP models. These different techniques allow us to answer different business-related questions about our models, such as available capacity and incremental costs. Finally, we complete our case study exercise and focus on using sensitivity analysis and simulation testing to answer questions about our model.

    Reproduzir Capítulo Agora
Para Empresas

Treinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

colaboradores

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Mari Nazary

pré-requisitos

Data Manipulation with pandas
Aaren Stubberfield HeadshotAaren Stubberfield

Senior Data Scientist @ Microsoft

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Supply Chain Analytics in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.