Pular para o conteúdo principal
InícioPython

Vector Databases for Embeddings with Pinecone

Discover how the Pinecone vector database is revolutionizing AI application development!

Comece O Curso Gratuitamente
3 horas12 vídeos39 exercícios

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas


Descrição do Curso

Unlock the Power of Embeddings with Pinecone's Vector Database

In the introductory chapters, you'll delve into the fundamentals of Pinecone, understanding its core capabilities, benefits, and key concepts such as pods, indexes, and projects. Through hands-on lessons, you'll compare Pinecone with other vector databases, gaining insights into its unparalleled functionality and usability.

Python Interaction with Pinecone

Equip yourself with the skills to interact seamlessly with Pinecone using Python. Learn to differentiate between pod types, set up your environment, and configure the Pinecone Python client. You will dive into the heart of Pinecone by learning to create vector databases programmatically, understand the parameters influencing Pinecone index creation, including dimensionality, distance metrics, pod types, and replicas, and master the art of ingesting vectors with metadata into Pinecone indexes. You will develop proficiency in querying and retrieving vectors using Python, and gain insights into updating and deleting vectors to handle concept drift effectively.

Advanced Pinecone and AI Applications

Going beyond the fundamentals and explore advanced Pinecone concepts such as monitoring Pinecone performance, tuning for efficiency, and implementing multi-tenancy for access control. You will explore advanced applications, including semantic search engines built on Pinecone and integrating it with OpenAI API for projects like the RAG chatbot.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.
DataCamp Para EmpresasPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Engenheiro associado de IA para desenvolvedores

Ir para a trilha
  1. 1

    Introduction to Pinecone

    Gratuito

    Explore the mechanics behind Pinecone's vector database, from pods and indexes to comparing it with other databases. Learn to differentiate pod types, acquire API keys, and initialise Pinecone connection using python. Finally, you’ll learn how to create Pinecone indexes, exploring different parameters such as dimensionality, distance metrics, pod types, and others.

    Reproduzir Capítulo Agora
    Introduction to Pinecone indexes
    50 xp
    Creating a Pinecone client
    100 xp
    Your first Pinecone index
    100 xp
    Managing indexes
    50 xp
    Connecting to an index
    100 xp
    Deleting an index
    100 xp
    The Pinecone ecosystem
    100 xp
    Vector ingestion
    50 xp
    Checking dimensionality
    100 xp
    Ingesting vectors with metadata
    100 xp
  2. 2

    Pinecone Vector Manipulation in Python

    Get hands-on with Pinecone in Python, where we explore the practical side of using Pinecone for managing indexes, adding vectors with metadata, searching and retrieving vectors, and making updates or deletions. Gain a solid grasp of the key functions and ideas to smoothly handle data in the Pinecone vector database.

    Reproduzir Capítulo Agora
  3. 3

    Performance Tuning and AI Applications

    In this chapter, learners delve into optimizing Pinecone index performance, leveraging multi-tenant namespaces for cost reduction, building semantic search engines, and creating retrieval-augmented question answering systems using Pinecone with the OpenAI API. Through these lessons, learners gain practical skills in performance tuning, semantic search, and retrieval-augmented question answering, empowering them to apply Pinecone effectively in real-world AI applications.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.

Nas seguintes faixas

Engenheiro associado de IA para desenvolvedores

Ir para a trilha

conjuntos de dados

YouTube TranscriptsStanford Question Answering Dataset (SQuAD)

colaboradores

Collaborator's avatar
Chris Harper

Áudio Gravado por

James Chapman's avatar
James Chapman
James Chapman HeadshotJames Chapman

Curriculum Manager, DataCamp

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 15 milhões de alunos e comece Vector Databases for Embeddings with Pinecone hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.