Vector Databases for Embeddings with Pinecone
Discover how the Pinecone vector database is revolutionizing AI application development!
Comece O Curso Gratuitamente3 horas12 vídeos39 exercícios
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do Curso
Unlock the Power of Embeddings with Pinecone's Vector Database
In the introductory chapters, you'll delve into the fundamentals of Pinecone, understanding its core capabilities, benefits, and key concepts such as pods, indexes, and projects. Through hands-on lessons, you'll compare Pinecone with other vector databases, gaining insights into its unparalleled functionality and usability.Python Interaction with Pinecone
Equip yourself with the skills to interact seamlessly with Pinecone using Python. Learn to differentiate between pod types, set up your environment, and configure the Pinecone Python client. You will dive into the heart of Pinecone by learning to create vector databases programmatically, understand the parameters influencing Pinecone index creation, including dimensionality, distance metrics, pod types, and replicas, and master the art of ingesting vectors with metadata into Pinecone indexes. You will develop proficiency in querying and retrieving vectors using Python, and gain insights into updating and deleting vectors to handle concept drift effectively.Advanced Pinecone and AI Applications
Going beyond the fundamentals and explore advanced Pinecone concepts such as monitoring Pinecone performance, tuning for efficiency, and implementing multi-tenancy for access control. You will explore advanced applications, including semantic search engines built on Pinecone and integrating it with OpenAI API for projects like the RAG chatbot.Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.Nas seguintes faixas
Engenheiro associado de IA para desenvolvedores
Ir para a trilha- 1
Introduction to Pinecone
GratuitoExplore the mechanics behind Pinecone's vector database, from pods and indexes to comparing it with other databases. Learn to differentiate pod types, acquire API keys, and initialise Pinecone connection using python. Finally, you’ll learn how to create Pinecone indexes, exploring different parameters such as dimensionality, distance metrics, pod types, and others.
- 2
Pinecone Vector Manipulation in Python
Get hands-on with Pinecone in Python, where we explore the practical side of using Pinecone for managing indexes, adding vectors with metadata, searching and retrieving vectors, and making updates or deletions. Gain a solid grasp of the key functions and ideas to smoothly handle data in the Pinecone vector database.
Retrieving vectors50 xpQuerying vs. fetching100 xpFetching vectors100 xpQuerying vectors50 xpReturning the most similar vectors100 xpChanging distance metrics100 xpMetadata filtering50 xpFiltering queries100 xpMultiple metadata filters100 xpUpdating and deleting vectors50 xpUpdating vector values100 xpUpdating vector metadata100 xpDeleting vectors100 xp - 3
Performance Tuning and AI Applications
In this chapter, learners delve into optimizing Pinecone index performance, leveraging multi-tenant namespaces for cost reduction, building semantic search engines, and creating retrieval-augmented question answering systems using Pinecone with the OpenAI API. Through these lessons, learners gain practical skills in performance tuning, semantic search, and retrieval-augmented question answering, empowering them to apply Pinecone effectively in real-world AI applications.
Batching upserts50 xpDefining a function for chunking100 xpBatching upserts in chunks100 xpBatching upserts in parallel100 xpMultitenancy and namespaces50 xpNamespaces100 xpQuerying namespaces100 xpSemantic search with Pinecone50 xpCreating and configuring a Pinecone index100 xpUpserting vectors for semantic search100 xpQuerying vectors for semantic search100 xpRAG chatbot with Pinecone and OpenAI50 xpUpserting YouTube transcripts100 xpBuilding a retrieval function100 xpRAG questions answering function100 xpCongratulations!50 xp
Treinar 2 ou mais pessoas?
Obtenha acesso à sua equipe à plataforma DataCamp completa, incluindo todos os recursos.Nas seguintes faixas
Engenheiro associado de IA para desenvolvedores
Ir para a trilhacolaboradores
Áudio Gravado por
pré-requisitos
Introduction to Embeddings with the OpenAI APIJames Chapman
Ver MaisCurriculum Manager, DataCamp
Ryan Ong
Ver MaisLead Data Scientist
O que os outros alunos têm a dizer?
Junte-se a mais de 15 milhões de alunos e comece Vector Databases for Embeddings with Pinecone hoje mesmo!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.