Pular para o conteúdo principal
InícioPython

projeto

Predictive Modeling for Agriculture

Intermediário
Updated 04/2024
Dive into agriculture using supervised machine learning and feature selection to aid farmers in crop cultivation and solve real-world problems.
Iniciar projeto gratuitamente

Incluído comPremium or Teams

PythonMachine learningDesenvolvimento de software1 hora1 Task1,500 XP15,649

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do Projeto

Predictive Modeling for Agriculture

A farmer reached out to you as a machine learning expert seeking help to select the best crop for his field. Due to budget constraints, the farmer explained that he could only afford to measure one out of the four essential soil measures: - `Nitrogen` content ratio in the soil - `Phosphorous` content ratio in the soil - `Potassium` content ratio in the soil - `pH` value of the soil The expert realized that this is a classic feature selection problem, where the objective is to pick the most important feature that could help predict the crop accurately. Can you help him?

Predictive Modeling for Agriculture

Dive into agriculture using supervised machine learning and feature selection to aid farmers in crop cultivation and solve real-world problems.
Iniciar projeto gratuitamente
  • 1

    In this project, you will be introduced to two techniques for feature selection and apply them to the farmer's problem. By working on this project, you will gain valuable insights into how machine learning can solve real-world agricultural problems.

Junte-se a mais 15 milhões de alunos e comece Predictive Modeling for Agriculture Hoje!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.