Pular para o conteúdo principal
InícioR

curso

Forecasting in R

Intermediário
Updated 12/2024
Learn how to make predictions about the future using time series forecasting in R including ARIMA models and exponential smoothing methods.
Iniciar curso gratuitamente

Incluído gratuitamentePremium or Teams

RProbabilidade e estatística5 horas18 vídeos55 exercícios4,450 XP49,217Declaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

Use Forecasting in R for Data-Driven Decision Making

This course provides an introduction to time series forecasting using R.

Forecasting involves making predictions about the future. It is required in many situations, such as deciding whether to build another power generation plant in the next ten years or scheduling staff in a call center next week.

Forecasts may be needed several years in advance (for the case of capital investments), or only a few minutes beforehand (for telecommunication routing). Whatever the circumstances or time horizons involved, reliable forecasting is essential to good data-driven decision-making.

Build Accurate Forecast Models with ARIMA and Exponential Smoothing

You’ll start this course by creating time series objects in R to plot your data and discover trends, seasonality, and repeated cycles. You’ll be introduced to the concept of white noise and look at how you can conduct a Ljung-Box test to confirm randomness before moving on to the next chapter, which details benchmarking methods and forecast accuracy.

Being able to test and measure your forecast accuracy is essential for developing usable models. This course reviews a variety of methods before diving into exponential smoothing and ARIMA models, which are two of the most widely-used approaches to time series forecasting.

Before you complete the course, you’ll learn how to use advanced ARIMA models to include additional information in them, such as holidays and competitor activity.

Pré-requisitos

Time Series Analysis in R
1

Exploring and visualizing time series in R

Iniciar capítulo
2

Benchmark methods and forecast accuracy

Iniciar capítulo
3

Exponential smoothing

Iniciar capítulo
4

Forecasting with ARIMA models

Iniciar capítulo
5

Advanced methods

Iniciar capítulo
Forecasting in R
Curso
Completo

Declaração de Realização Earn

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 15 milhões de alunos e comece Forecasting in R Hoje!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.