Saltar al contenido principal
InicioPython

Model Validation in Python

Learn the basics of model validation, validation techniques, and begin creating validated and high performing models.

Comienza El Curso Gratis
4 horas15 vídeos47 ejercicios24.536 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Machine learning models are easier to implement now more than ever before. Without proper validation, the results of running new data through a model might not be as accurate as expected. Model validation allows analysts to confidently answer the question, how good is your model? We will answer this question for classification models using the complete set of tic-tac-toe endgame scenarios, and for regression models using fivethirtyeight’s ultimate Halloween candy power ranking dataset. In this course, we will cover the basics of model validation, discuss various validation techniques, and begin to develop tools for creating validated and high performing models.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista
  1. 1

    Basic Modeling in scikit-learn

    Gratuito

    Before we can validate models, we need an understanding of how to create and work with them. This chapter provides an introduction to running regression and classification models in scikit-learn. We will use this model building foundation throughout the remaining chapters.

    Reproducir Capítulo Ahora
    Introduction to model validation
    50 xp
    Modeling steps
    50 xp
    Seen vs. unseen data
    100 xp
    Regression models
    50 xp
    Set parameters and fit a model
    100 xp
    Feature importances
    100 xp
    Classification models
    50 xp
    Classification predictions
    100 xp
    Reusing model parameters
    100 xp
    Random forest classifier
    100 xp
  2. 2

    Validation Basics

    This chapter focuses on the basics of model validation. From splitting data into training, validation, and testing datasets, to creating an understanding of the bias-variance tradeoff, we build the foundation for the techniques of K-Fold and Leave-One-Out validation practiced in chapter three.

    Reproducir Capítulo Ahora
  3. 3

    Cross Validation

    Holdout sets are a great start to model validation. However, using a single train and test set if often not enough. Cross-validation is considered the gold standard when it comes to validating model performance and is almost always used when tuning model hyper-parameters. This chapter focuses on performing cross-validation to validate model performance.

    Reproducir Capítulo Ahora
  4. 4

    Selecting the best model with Hyperparameter tuning.

    The first three chapters focused on model validation techniques. In chapter 4 we apply these techniques, specifically cross-validation, while learning about hyperparameter tuning. After all, model validation makes tuning possible and helps us select the overall best model.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista

conjuntos de datos

Candy datasetTic-Tac-Toe dataset

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins
Kasey Jones HeadshotKasey Jones

Research Data Scientist

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Model Validation in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.