Saltar al contenido principal
InicioPythonAdvanced Deep Learning with Keras

Advanced Deep Learning with Keras

Build multiple-input and multiple-output deep learning models using Keras.

Comience El Curso Gratis
4 Horas13 Videos46 Ejercicios
31.650 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

This course shows you how to solve a variety of problems using the versatile Keras functional API. You will start with simple, multi-layer dense networks (also known as multi-layer perceptrons), and continue on to more complicated architectures. The course will cover how to build models with multiple inputs and a single output, as well as how to share weights between layers in a model. We will also cover advanced topics such as category embeddings and multiple-output networks. If you've ever wanted to train a network that does both classification and regression, then this course is for you!
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Keras Fundamentals

Ir a la pista
  1. 1

    The Keras Functional API

    Gratuito

    In this chapter, you'll become familiar with the basics of the Keras functional API. You'll build a simple functional network using functional building blocks, fit it to data, and make predictions.

    Reproducir Capítulo Ahora
    Keras input and dense layers
    50 xp
    Input layers
    100 xp
    Dense layers
    100 xp
    Output layers
    100 xp
    Build and compile a model
    50 xp
    Build a model
    100 xp
    Compile a model
    100 xp
    Visualize a model
    100 xp
    Fit and evaluate a model
    50 xp
    Fit the model to the tournament basketball data
    100 xp
    Evaluate the model on a test set
    100 xp
  2. 2

    Two Input Networks Using Categorical Embeddings, Shared Layers, and Merge Layers

    In this chapter, you will build two-input networks that use categorical embeddings to represent high-cardinality data, shared layers to specify re-usable building blocks, and merge layers to join multiple inputs to a single output. By the end of this chapter, you will have the foundational building blocks for designing neural networks with complex data flows.

    Reproducir Capítulo Ahora
  3. 3

    Multiple Inputs: 3 Inputs (and Beyond!)

    In this chapter, you will extend your 2-input model to 3 inputs, and learn how to use Keras' summary and plot functions to understand the parameters and topology of your neural networks. By the end of the chapter, you will understand how to extend a 2-input model to 3 inputs and beyond.

    Reproducir Capítulo Ahora
  4. 4

    Multiple Outputs

    In this chapter, you will build neural networks with multiple outputs, which can be used to solve regression problems with multiple targets. You will also build a model that solves a regression problem and a classification problem simultaneously.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Keras Fundamentals

Ir a la pista

Sets De Datos

Basketball dataBasketball models

Colaboradores

Collaborator's avatar
Sumedh Panchadhar
Zachary Deane-Mayer HeadshotZachary Deane-Mayer

VP, Data Science at DataRobot

Ver Mas

¿Qué tienen que decir otros alumnos?

¡Únete a 13 millones de estudiantes y empieza Advanced Deep Learning with Keras hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.