Saltar al contenido principal
InicioPythonImporting and Managing Financial Data in Python

# Importing and Managing Financial Data in Python

In this course, you'll learn how to import and manage financial data in Python using various tools and sources.

Comience El Curso Gratis
5 horas16 vídeos53 ejercicios
41.284 aprendicesDeclaración de cumplimiento

## Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

## Descripción del curso

If you want to apply your new 'Python for Data Science' skills to real-world financial data, then this course will give you some very valuable tools. First, you will learn how to get data out of Excel into pandas and back. Then, you will learn how to pull stock prices from various online APIs like Google or Yahoo! Finance, macro data from the Federal Reserve, and exchange rates from OANDA. Finally, you will learn how to calculate returns for various time horizons, analyze stock performance by sector for IPOs, and calculate and summarize correlations.
Empresas

### .css-1goj2uy{margin-right:8px;}Group.css-gnv7tt{font-size:20px;font-weight:700;white-space:nowrap;}.css-12nwtlk{box-sizing:border-box;margin:0;min-width:0;color:#05192D;font-size:16px;line-height:1.5;font-size:20px;font-weight:700;white-space:nowrap;}¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

Ir a la pista
1. 1

### Importing stock listing data from Excel

Gratuito

In this chapter, you will learn how to import, clean and combine data from Excel workbook sheets into a pandas DataFrame. You will also practice grouping data, summarizing information for categories, and visualizing the result using subplots and heatmaps. You will use data on companies listed on the stock exchanges NASDAQ, NYSE, and AMEX with information on company name, stock symbol, last market capitalization and price, sector or industry group, and IPO year. In Chapter 2, you will build on this data to download and analyze stock price history for some of these companies.

Reproducir Capítulo Ahora
Reading, inspecting, and cleaning data from CSV
50 xp
Import stock listing info from the NASDAQ
100 xp
How to fix the data import?
50 xp
100 xp
50 xp
Load listing info from a single sheet
100 xp
Load listing data from two sheets
100 xp
Combine data from multiple worksheets
50 xp
Load all listing data and iterate over key-value dictionary pairs
100 xp
How many companies are listed on the NYSE and NASDAQ?
50 xp
100 xp
2. 2

### Importing financial data from the web

This chapter introduces online data access to Google Finance and the Federal Reserve Data Service through the `pandas` `DataReader`. You will pull data, perform basic manipulations, combine data series, and visualize the results.

3. 3

### Summarizing your data and visualizing the result

In this chapter, you will learn how to capture key characteristics of individual variables in simple metrics. As a result, it will be easier to understand the distribution of the variables in your data set: Which values are central to, or typical of your data? Is your data widely dispersed, or rather narrowly distributed around some mid point? Are there outliers? What does the overall distribution look like?

4. 4

### Aggregating and describing your data by category

This chapter introduces the ability to group data by one or more categorical variables, and to calculate and visualize summary statistics for each caategory. In the process, you will learn to compare company statistics for different sectors and IPO vintages, analyze the global income distribution over time, and learn how to create various statistical charts from the seaborn library.

Empresas

### Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

### En las siguientes pistas

#### Fundamentos de Finanzas en Python

Ir a la pista

conjuntos de datos

Amex listings .csv fileIncome growth .csv fileListings .xlsx fileNasdaq listings .csv filePer capita income .csv file

Stefan Jansen

Founder & Lead Data Scientist at Applied Artificial Intelligence

Ver Más