Saltar al contenido principal
InicioPython

curso

Análisis de Series Temporales en Python

Intermedio
Updated 12/2024
En este curso de cuatro horas, aprenderás lo básico del análisis de series temporales en Python.
Comienza el curso gratis

Incluido de forma gratuitaPremium or Teams

PythonProbabilidad y estadística4 horas17 vídeos59 ejercicios4,850 XP61,869Declaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas

Descripción del curso

Aprende a utilizar Python para el Análisis de Series Temporales

Desde los precios de las acciones hasta los datos climáticos, puedes encontrar datos de series temporales en una gran variedad de ámbitos. Tener las habilidades para trabajar con esos datos de forma eficaz es una habilidad cada vez más importante para los científicos de datos. Este curso te introducirá en el análisis de series temporales en Python.

Tras aprender qué es una serie temporal, explorarás varios modelos de series temporales, desde modelos autorregresivos y de medias móviles hasta modelos de cointegración. Por el camino, aprenderás a estimar, predecir y simular estos modelos utilizando bibliotecas estadísticas en Python.

Verás numerosos ejemplos de cómo se utilizan estos modelos, con especial énfasis en las aplicaciones en finanzas.

Descubre cómo utilizar los métodos de series temporales

Empezarás cubriendo los fundamentos de los datos de series temporales, así como la regresión lineal simple. Tratarás los conceptos de correlación y autocorrelación y cómo se aplican a los datos de series temporales, antes de explorar algunos modelos sencillos de series temporales, como el ruido blanco y el paseo aleatorio. A continuación, explorarás cómo se utilizan los modelos autorregresivos (AR) en los datos de series temporales para predecir los valores actuales y cómo los modelos de medias móviles pueden combinarse con los modelos AR para producir potentes modelos ARMA.

Por último, verás cómo utilizar modelos de cointegración para modelizar dos series conjuntamente antes de estudiar un caso práctico real.

Explora los modelos y bibliotecas de Python para el análisis de series temporales Al final de este curso, comprenderás cómo funciona el análisis de series temporales en Python. Conocerás algunos de los modelos, métodos y bibliotecas que pueden ayudarte en el proceso y sabrás elegir los adecuados para tu propio análisis.

Este curso forma parte de un programa más amplio de Series Temporales con Python, que ofrece un conjunto de cinco cursos para ayudarte a dominar esta habilidad de la ciencia de datos.

Prerrequisitos

Manipulating Time Series Data in Python
1

Correlación y Autocorrelación

Iniciar capítulo
2

Algunas series temporales sencillas

Iniciar capítulo
3

Modelos Autorregresivos (AR)

Iniciar capítulo
4

Modelos de medias móviles (MA) y ARMA

Iniciar capítulo
5

Ponerlo todo junto

Iniciar capítulo
Análisis de Series Temporales en Python
Curso
Completo

Obtener Declaración de Logro

Añade esta credencial a tu perfil, currículum vitae o CV de LinkedIn
Compártelo en las redes sociales y en tu evaluación de desempeño

Incluido conPremium or Teams

Inscríbete ahora

Únete a más 15 millones de estudiantes y empezar Análisis de Series Temporales en Python ¡Hoy!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.