Saltar al contenido principal
InicioPythonA/B Testing in Python

A/B Testing in Python

Learn the practical uses of A/B testing in Python to run and analyze experiments. Master p-values, sanity checks, and analysis to guide business decisions.

Comience El Curso Gratis
4 horas16 vídeos51 ejercicios
5749 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

In this course, you will dive into the world of A/B testing, gain a deep understanding of the practical use cases, and learn to design, run, and analyze these A/B tests in Python.

Discover How A/B Tests Work



Did you know that you are almost guaranteed to participate in an A/B test every time you browse the internet? From search engines and e-commerce sites to social networks and marketing campaigns — all businesses hire the best data analysts, scientists, and engineers to leverage the power of AB testing. Testing different variants can help optimize the customer experience, maximize profits, inform the next best design, and much more.

Learn About A/B Testing in Python



You’ll start by learning how to define the right metrics before learning how to estimate the appropriate sample size and duration to yield conclusive results. Throughout this course, you’ll use a range of Python packages to help with A/B testing, including statsmodels, scipy, and pingouin.

By the end of the course, you will be able to run the necessary checks that guarantee accurate results, master the art of p-values, and analyze the results of A/B tests with ease and confidence to guide the most critical business decisions.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Estadística Aplicada en Python

Ir a la pista
  1. 1

    Overview of A/B Testing

    Gratuito

    In this chapter, you’ll learn the foundations of A/B testing. You’ll explore clear steps and use cases, learn the reasons and value of designing and running A/B tests, and discover the most commonly used metrics design and estimation frameworks.

    Reproducir Capítulo Ahora
    What is A/B testing?
    50 xp
    When an A/B test is not best
    50 xp
    A/B testing steps
    100 xp
    Randomization effects
    100 xp
    Why run experiments?
    50 xp
    Correlation visualization
    100 xp
    Correlation or causation?
    50 xp
    Metrics design and estimation
    50 xp
    Means and proportions
    100 xp
    Ad impressions metrics
    100 xp
  2. 2

    Experiment Design and Planning

    In Chapter 2, you’ll cover the experiment design process. Starting with learning how to formulate strong A/B testing hypotheses, you’ll also cover statistical concepts such as power, error rates, and minimum detectable effects. You’ll finish the chapter by learning to estimate the appropriate sample size needed to yield conclusive results and tackle scenarios with multiple comparisons.

    Reproducir Capítulo Ahora
  3. 3

    Data Processing, Sanity Checks, and Results Analysis

    Here, you’ll discover a concrete workflow for cleaning, preprocessing, and exploring AB testing data, as well as learn the necessary sanity checks we need to follow to ensure valid results. You’ll explore a detailed explanation and example of analyzing difference in proportions A/B tests.

    Reproducir Capítulo Ahora
  4. 4

    Practical Considerations and Making Decisions

    In the final chapter, you’ll develop frameworks for analyzing differences in means and leveraging non-parametric tests when several assumptions aren't met. You’ll also learn how to apply the Delta method when analyzing ratio metrics and discover the best practices and some advanced topics to continue the A/B testing mastery journey.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Estadística Aplicada en Python

Ir a la pista

conjuntos de datos

checkoutadmissions

colaboradores

Collaborator's avatar
Jasmin Ludolf
Collaborator's avatar
George Boorman
Collaborator's avatar
Maham Khan
Moe Lotfy, PhD HeadshotMoe Lotfy, PhD

Principal Data Science Manager

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza A/B Testing in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.