Saltar al contenido principal
InicioPython

curso

Diseño experimental en Python

Intermedio
Updated 12/2024
"Implementa diseños experimentales y realiza análisis estadísticos robustos para conclusiones precisas y válidas."
Comienza el curso gratis

Incluido de forma gratuitaPremium or Teams

PythonProbabilidad y estadística4 horas14 vídeos47 ejercicios3,700 XP4,902Declaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas

Descripción del curso

Implementar configuraciones de diseño experimental

Aprende a aplicar la configuración de diseño experimental más adecuada para tu caso de uso. Aprende cómo pueden aplicarse los diseños de bloques aleatorizados y los diseños factoriales para medir los efectos del tratamiento y extraer conclusiones válidas y precisas.

Realizar Análisis Estadísticos de los Datos Experimentales

Profundiza en la realización de análisis estadísticos de datos experimentales, incluida la selección y realización de pruebas estadísticas, como las pruebas t, las pruebas ANOVA y las pruebas de asociación chi-cuadrado. Realiza un análisis post-hoc siguiendo las pruebas de ANOVA para descubrir con precisión qué comparaciones por pares son significativamente diferentes.

Realiza un análisis de potencia

Aprende a medir el tamaño del efecto para determinar la cantidad en que difieren los grupos, más allá de ser significativamente diferentes. Realiza un análisis de potencia utilizando un tamaño del efecto supuesto para determinar el tamaño mínimo de la muestra necesario para obtener la potencia estadística requerida. Utiliza la formulación d de Cohen para medir el tamaño del efecto de algunos datos de la muestra, y comprueba si los supuestos sobre el tamaño del efecto utilizados en el análisis de potencia eran correctos.

Abordar las complejidades de los datos experimentales

Extrae ideas de datos experimentales complejos y aprende las mejores prácticas para comunicar los resultados a las distintas partes interesadas. Aborda complejidades como las interacciones, la heteroscedasticidad y la confusión en los datos experimentales para mejorar la validez de tus conclusiones. Cuando los datos no cumplan los supuestos de las pruebas paramétricas, aprenderás a elegir y aplicar una prueba no paramétrica adecuada.

Prerrequisitos

Hypothesis Testing in Python
1

Diseño experimental Preliminares

Iniciar capítulo
2

Técnicas de diseño experimental

Iniciar capítulo
3

Análisis de datos experimentales: Pruebas estadísticas y potencia

Iniciar capítulo
4

Perspectivas avanzadas de la complejidad experimental

Iniciar capítulo
Diseño experimental en Python
Curso
Completo

Obtener Declaración de Logro

Añade esta credencial a tu perfil, currículum vitae o CV de LinkedIn
Compártelo en las redes sociales y en tu evaluación de desempeño

Incluido conPremium or Teams

Inscríbete ahora

Únete a más 15 millones de estudiantes y empezar Diseño experimental en Python ¡Hoy!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.