curso
CI/CD for Machine Learning
Avanzado
Updated 12/2024Comienza el curso gratis
Incluido de forma gratuitaPremium or Teams
ShellMachine Learning5 horas15 vídeos46 ejercicios3,500 XP3,780Declaración de cumplimiento
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?
Probar DataCamp for BusinessPreferido por estudiantes en miles de empresas
Descripción del curso
Fundamentals of CI/CD, YAML, and Machine Learning
You'll be introduced to the fundamental concepts of CI/CD and YAML, and gain an understanding of the software development life cycle and key terms like build, test, and deploy. You'll define Continuous Integration, Continuous Delivery, and Continuous Deployment while examining their distinctions. You'll also explore the utility of CI/CD in machine learning and experimentation.GitHub Actions for CI/CD Automation
You'll learn about GA, a powerful platform for implementing CI/CD workflows. You'll discover the various elements of GA, including events, actions, jobs, steps, runners, and context. You'll learn how to define workflows triggered by events such as push and pull requests and customize runner machines. You'll also gain practical experience by setting up basic CI pipelines and understanding the GA log.Versioning Datasets with Data Version Control
You'll delve deep into Data Version Control (DVC) for versioning datasets, initializing DVC, and tracking datasets. Using DVC pipelines, you'll learn how to train classification models and generate metrics in a reproducible manner.Optimizing Model Performance and Hyperparameter Tuning
You'll now focus on model performance analysis and hyperparameter tuning and gain practical skills in diffing metrics and plots across branches to compare changes in model performance. You'll learn how to download artifacts using GA and perform hyperparameter tuning using scikit-learn's GridSearchCV. Additionally, you'll explore automating pull requests with the best model configuration.Prerrequisitos
MLOps ConceptsSupervised Learning with scikit-learnFoundations of Git1
Introduction to Continuous Integration/Continuous Delivery and YAML
2
GitHub Actions
3
Continuous Integration in Machine Learning
4
Comparing training runs and Hyperparameter (HP) tuning
CI/CD for Machine Learning
Curso Completo
Obtener Declaración de Logro
Añade esta credencial a tu perfil, currículum vitae o CV de LinkedInCompártelo en las redes sociales y en tu evaluación de desempeño
Incluido conPremium or Teams
Inscríbete ahoraÚnete a más 15 millones de estudiantes y empezar CI/CD for Machine Learning ¡Hoy!
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.