curso
Introducción al aprendizaje profundo con PyTorch
Intermedio
Updated 12/2024Comienza el curso gratis
Incluido de forma gratuitaPremium or Teams
PyTorchInteligencia artificial4 horas16 vídeos48 ejercicios3,850 XP33,922Declaración de cumplimiento
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?
Probar DataCamp for BusinessPreferido por estudiantes en miles de empresas
Descripción del curso
Comprender el poder del aprendizaje profundo
El aprendizaje profundo está en todas partes: en las cámaras de los smartphones, en los asistentes de voz y en los vehículos autónomos. Incluso ha ayudado a descubrir estructuras de proteínas y a vencer a los humanos en el juego del go. Descubre esta potente tecnología y aprende a aprovecharla utilizando PyTorch, una de las bibliotecas de aprendizaje profundo más populares.Entrena tu primera red neuronal
En primer lugar, aborda la diferencia entre el aprendizaje profundo y el machine learning "clásico". Aprenderás el proceso de entrenamiento de una red neuronal y a escribir un bucle de entrenamiento. Para ello, crearás funciones de pérdida para problemas de regresión y clasificación y aprovecharás PyTorch para calcular sus derivadas.Evalúa y mejora tu modelo
En la segunda parte, aprenderás los distintos hiperparámetros que puedes ajustar para mejorar tu modelo. Tras conocer los distintos componentes de una red neuronal, podrás crear arquitecturas mayores y más complejas. Para medir el rendimiento de tus modelos, utilizarás TorchMetrics, una biblioteca de PyTorch para la evaluación de modelos.Al finalizar, serás capaz de aprovechar PyTorch para resolver problemas de clasificación y regresión en datos tabulares y de imágenes utilizando el aprendizaje profundo. Una capacidad vital para los profesionales de datos con experiencia que buscan avanzar en sus carreras.
Prerrequisitos
Supervised Learning with scikit-learnIntroduction to NumPyPython Toolbox1
Introducción a PyTorch, una biblioteca de aprendizaje profundo
2
Entrenamiento de nuestra primera red neuronal con PyTorch
3
Hiperparámetros y arquitectura de redes neuronales
4
Evaluación y mejora de los modelos
Introducción al aprendizaje profundo con PyTorch
Curso Completo
Obtener Declaración de Logro
Añade esta credencial a tu perfil, currículum vitae o CV de LinkedInCompártelo en las redes sociales y en tu evaluación de desempeño
Incluido conPremium or Teams
Inscríbete ahoraÚnete a más 15 millones de estudiantes y empezar Introducción al aprendizaje profundo con PyTorch ¡Hoy!
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.