Saltar al contenido principal
InicioPython

Dimensionality Reduction in Python

Understand the concept of reducing dimensionality in your data, and master the techniques to do so in Python.

Comienza El Curso Gratis
4 horas16 vídeos58 ejercicios30.508 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

High-dimensional datasets can be overwhelming and leave you not knowing where to start. Typically, you’d visually explore a new dataset first, but when you have too many dimensions the classical approaches will seem insufficient. Fortunately, there are visualization techniques designed specifically for high dimensional data and you’ll be introduced to these in this course. After exploring the data, you’ll often find that many features hold little information because they don’t show any variance or because they are duplicates of other features. You’ll learn how to detect these features and drop them from the dataset so that you can focus on the informative ones. In a next step, you might want to build a model on these features, and it may turn out that some don’t have any effect on the thing you’re trying to predict. You’ll learn how to detect and drop these irrelevant features too, in order to reduce dimensionality and thus complexity. Finally, you’ll learn how feature extraction techniques can reduce dimensionality for you through the calculation of uncorrelated principal components.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista
  1. 1

    Exploring High Dimensional Data

    Gratuito

    You'll be introduced to the concept of dimensionality reduction and will learn when an why this is important. You'll learn the difference between feature selection and feature extraction and will apply both techniques for data exploration. The chapter ends with a lesson on t-SNE, a powerful feature extraction technique that will allow you to visualize a high-dimensional dataset.

    Reproducir Capítulo Ahora
    Introduction
    50 xp
    Finding the number of dimensions in a dataset
    50 xp
    Removing features without variance
    100 xp
    Feature selection vs. feature extraction
    50 xp
    Visually detecting redundant features
    100 xp
    Advantage of feature selection
    50 xp
    t-SNE visualization of high-dimensional data
    50 xp
    t-SNE intuition
    50 xp
    Fitting t-SNE to the ANSUR data
    100 xp
    t-SNE visualisation of dimensionality
    100 xp
  2. 2

    Feature Selection I - Selecting for Feature Information

    In this first out of two chapters on feature selection, you'll learn about the curse of dimensionality and how dimensionality reduction can help you overcome it. You'll be introduced to a number of techniques to detect and remove features that bring little added value to the dataset. Either because they have little variance, too many missing values, or because they are strongly correlated to other features.

    Reproducir Capítulo Ahora
  3. 4

    Feature Extraction

    This chapter is a deep-dive on the most frequently used dimensionality reduction algorithm, Principal Component Analysis (PCA). You'll build intuition on how and why this algorithm is so powerful and will apply it both for data exploration and data pre-processing in a modeling pipeline. You'll end with a cool image compression use case.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista

conjuntos de datos

ANSUR FemaleANSUR MaleDiabetesGrocery store salesBoston Public SchoolsPokemon

colaboradores

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Hillary Green-Lerman
Collaborator's avatar
Chester Ismay
Jeroen Boeye HeadshotJeroen Boeye

Machine Learning Engineer @ Faktion

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Dimensionality Reduction in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.