curso
Dimensionality Reduction in R
Intermedio
Updated 12/2024Comienza el curso gratis
Incluido de forma gratuitaPremium or Teams
RMachine Learning4 horas16 vídeos56 ejercicios4,600 XPDeclaración de cumplimiento
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?
Probar DataCamp for BusinessPreferido por estudiantes en miles de empresas
Descripción del curso
Why learn dimensionality reduction?
We live in the information age—an era of information overload. The art of extracting essential information from data is a marketable skill. Models train faster on reduced data. In production, smaller models mean faster response time. Perhaps most important, smaller data and models are often easier to understand. Dimensionality reduction is your Occam’s razor in data science.
What will you learn in this course?
The difference between feature selection and feature extraction! Using R, you will learn how to identify and remove features with low or redundant information, keeping the features with the most information. That’s feature selection. You will also learn how to extract combinations of features as condensed components that contain maximal information. That’s feature extraction!
But most importantly, using R’s new tidymodel package, you will use real-world data to build models with fewer features without sacrificing significant performance.
Prerrequisitos
Modeling with tidymodels in R1
Foundations of Dimensionality Reduction
2
Feature Selection for Feature Importance
3
Feature Selection for Model Performance
4
Feature Extraction and Model Performance
Dimensionality Reduction in R
Curso Completo
Obtener Declaración de Logro
Añade esta credencial a tu perfil, currículum vitae o CV de LinkedInCompártelo en las redes sociales y en tu evaluación de desempeño
Incluido conPremium or Teams
Inscríbete ahoraÚnete a más 15 millones de estudiantes y empezar Dimensionality Reduction in R ¡Hoy!
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.