Saltar al contenido principal
InicioPython

Extreme Gradient Boosting with XGBoost

Learn the fundamentals of gradient boosting and build state-of-the-art machine learning models using XGBoost to solve classification and regression problems.

Comienza El Curso Gratis
4 horas16 vídeos49 ejercicios52.557 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Do you know the basics of supervised learning and want to use state-of-the-art models on real-world datasets? Gradient boosting is currently one of the most popular techniques for efficient modeling of tabular datasets of all sizes. XGboost is a very fast, scalable implementation of gradient boosting, with models using XGBoost regularly winning online data science competitions and being used at scale across different industries. In this course, you'll learn how to use this powerful library alongside pandas and scikit-learn to build and tune supervised learning models. You'll work with real-world datasets to solve classification and regression problems.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista

Aprendizaje automático supervisado en Python

Ir a la pista
  1. 1

    Classification with XGBoost

    Gratuito

    This chapter will introduce you to the fundamental idea behind XGBoost—boosted learners. Once you understand how XGBoost works, you'll apply it to solve a common classification problem found in industry: predicting whether a customer will stop being a customer at some point in the future.

    Reproducir Capítulo Ahora
    Welcome to the course!
    50 xp
    Which of these is a classification problem?
    50 xp
    Which of these is a binary classification problem?
    50 xp
    Introducing XGBoost
    50 xp
    XGBoost: Fit/Predict
    100 xp
    What is a decision tree?
    50 xp
    Decision trees
    100 xp
    What is Boosting?
    50 xp
    Measuring accuracy
    100 xp
    Measuring AUC
    100 xp
    When should I use XGBoost?
    50 xp
    Using XGBoost
    50 xp
  2. 2

    Regression with XGBoost

    After a brief review of supervised regression, you'll apply XGBoost to the regression task of predicting house prices in Ames, Iowa. You'll learn about the two kinds of base learners that XGboost can use as its weak learners, and review how to evaluate the quality of your regression models.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista

Aprendizaje automático supervisado en Python

Ir a la pista

conjuntos de datos

Ames housing prices (preprocessed)Ames housing prices (original)Chronic kidney disease

colaboradores

Collaborator's avatar
Hugo Bowne-Anderson
Collaborator's avatar
Yashas Roy
Sergey Fogelson HeadshotSergey Fogelson

Head of Data Science, TelevisaUnivision

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Extreme Gradient Boosting with XGBoost hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.